Zum Hauptinhalt springen

New and effective cassava bagasse-modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture.

Gonçalves, JO ; Crispim, MM ; et al.
In: Environmental science and pollution research international, Jg. 31 (2024), Heft 4, S. 5209-5220
Online academicJournal

Titel:
New and effective cassava bagasse-modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture.
Autor/in / Beteiligte Person: Gonçalves, JO ; Crispim, MM ; Rios, EC ; Silva, LF ; de Farias BS ; Sant'Anna Cadaval Junior, TR ; de Almeida Pinto LA ; Nawaz, A ; Manoharadas, S ; Dotto, GL
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 31 (2024), Heft 4, S. 5209-5220
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2024
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-023-31489-2
Schlagwort:
  • Coloring Agents chemistry
  • Hydrogen-Ion Concentration
  • Charcoal chemistry
  • Adsorption
  • Kinetics
  • Manihot
  • Water Pollutants, Chemical chemistry
  • Azo Compounds
  • Benzenesulfonates
  • Cellulose
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2024 Jan; Vol. 31 (4), pp. 5209-5220. <i>Date of Electronic Publication: </i>2023 Dec 19.
  • MeSH Terms: Manihot* ; Water Pollutants, Chemical* / chemistry ; Azo Compounds* ; Benzenesulfonates* ; Cellulose* ; Coloring Agents / chemistry ; Hydrogen-Ion Concentration ; Charcoal / chemistry ; Adsorption ; Kinetics
  • References: Aello OS, Owojuyigbe ES, Babatunde MS et al (2017) Sustainable conversion of agro-wastes into useful adsorbents. Appl Water Sci 7:3561–3571. (PMID: 10.1007/s13201-016-0494-0) ; Alves DC, Pires RACV, Alga FFD et al (2021) Chitosan-coated glass beads in a fluidized bed for use in fixed-bed dye adsorption. Chem Eng Technol 44:631–638. (PMID: 10.1002/ceat.202000307) ; Anas AK, Pratama SY, Izzah A, Kurniawan MA (2021) Sodium dodecylbenzene sulfonate-modified biochar as an adsorbent for the removal of methylene blue. Bull Chem React Eng Catal 16(1):188–195. (PMID: 10.9767/bcrec.16.1.10323.188-195) ; Archin S, Sharifi SH, Asadpour G (2019) Optimization and modeling of simultaneous ultrasound-assisted adsorption of binary dyes using activated carbon from tobacco residues: response surface methodology. J Clean Prod 239:118136. (PMID: 10.1016/j.jclepro.2019.118136) ; ASTM – American Society For Testing And Materials (2013) Standard test method for assignment of the DSC procedure for determining Tg of a polymer or an elastomeric compound. Method ASTM D7426 – 08. In: ASTM annual book of ASTM standards, West Conshohocken.  https://doi.org/10.1520/D7426-08. ; Cantrell KB, Hunt PG, Uchimiya M et al (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. (PMID: 10.1016/j.biortech.2011.11.084) ; Chen J, Bai X, Yuan Y et al (2022a) Printing and dyeing sludge derived biochar for activation of peroxymonosulfate to remove aqueous organic pollutants: activation mechanisms and environmental safety assessment. Chem Eng J 446:136942. (PMID: 10.1016/j.cej.2022.136942) ; Dos Reis GS, Thivet J, Laisné E, Srivastava V, Grimm A et al (2023a) Synthesis of novel mesoporous selenium-doped biochar with high-performance sodium diclofenac and reactive orange 16 dye removals. Chem Eng Sci 281:119129. (PMID: 10.1016/j.ces.2023.119129) ; Dos Reis GS, Bergna D, Grimm A et al (2023b) Preparation of highly porous nitrogen-doped biochar derived from birch tree wastes with superior dye removal performance. Colloids Surf A Physicochem Eng Asp 669:131493. (PMID: 10.1016/j.colsurfa.2023.131493) ; Dotto GL, McKay (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8:103988. (PMID: 10.1016/j.jece.2020.103988) ; Dotto GL, Pinto LAA, Hachicha MA et al (2015) New physicochemical interpretations for the adsorption of food dyes on chitosan films using statistical physics treatment. Food Chem 171:1–7. (PMID: 10.1016/j.foodchem.2014.08.098) ; Druzian SP, Zanatta NP, Borchardt RK et al (2021) Chitin-psyllium based aerogel for the efficient removal of crystal violet from aqueous solutions. Int J Biol Macromol 179:366–376. (PMID: 10.1016/j.ijbiomac.2021.02.179) ; Dupont GK, Oliveira MM, Clerici NJ et al (2023) Kinetic modelling and improvement of methane production from the anaerobic co-digestion of swine manure and cassava bagasse. Biomass Bioenergy 176:106900. (PMID: 10.1016/j.biombioe.2023.106900) ; Franciski MA, Peres EC, Godinho M et al (2018) Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption. Waste Manag 78:630–638. (PMID: 10.1016/j.wasman.2018.06.040) ; Fernández-Andrade KJ, González-Vargas MC, Rodríguez-Rico et al (2022) Evaluation of mass transfer in packed column for competitive adsorption of Tartrazine and brilliant blue FCF: a statistical analysis. Results in Engineering 14:100449. (PMID: 10.1016/j.rineng.2022.100449) ; Gal J, Rodríguez A, Walker GM (2014) Dye adsorption onto mesoporous materials: pH influence, kinetics and equilibrium in buffered and saline media. Chem Eng J 146:355–361. ; Gonçalves JO, da Silva KA, Rios EC et al (2020a) Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int J Biol Macromol 142:85–93. (PMID: 10.1016/j.ijbiomac.2019.09.074) ; Gonçalves JO, da Silva KA, Rios EC et al (2020b) Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int J Biol Macromol 142:85–93. (PMID: 10.1016/j.ijbiomac.2019.09.074) ; Gonçalves JO, Santos JP, Rios EC et al (2017) Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system. J Mol Liq 225:265–270. (PMID: 10.1016/j.molliq.2016.11.067) ; Gryglewicz S, Lorenc-grabowska E (2004) Development of mesoporosity in activated carbons via coal modification using Ca- and Fe-exchange. Microporous Mesoporous Mater 76:193–201. (PMID: 10.1016/j.micromeso.2004.08.012) ; Gupta VK, Suhas S (2009) Application of low-cost adsorbents for dye removal- a review. J Environ Manag 90:2313–2342. (PMID: 10.1016/j.jenvman.2008.11.017) ; Gurav R, Bhatia SK, Choi TR et al (2021) Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye. Chemosphere 264:128539. (PMID: 10.1016/j.chemosphere.2020.128539) ; Hernández-Abreu AB, Álvarez-Torrellas S, Águeda VI et al (2022) Enhanced removal of the endocrine disruptor compound bisphenol A by adsorption onto green-carbon materials. Effect of real effluents on the adsorption process. J Environ Manag 266:110604. (PMID: 10.1016/j.jenvman.2020.110604) ; Huang P, Ge C, Feng D et al (2018) Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar. Sci Total Environ 616–617:1384–1391. (PMID: 10.1016/j.scitotenv.2017.10.177) ; Jang ES, Ryu DY, Kim D (2022) Hydrothermal carbonization improves the quality of biochar derived from livestock manure by removing inorganic matter. Chemosphere 305:135391. (PMID: 10.1016/j.chemosphere.2022.135391) ; Jin H, Capareda S, Chang Z et al (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629. (PMID: 10.1016/j.biortech.2014.06.103) ; Keiluweit M, Nico PS, Johnson MG et al (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253. (PMID: 10.1021/es9031419) ; Kim KH, Kim JY, Cho TS et al (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol 118:158–162. (PMID: 10.1016/j.biortech.2012.04.094) ; Leng L, Huang H, Li H et al (2019) Biochar stability assessment methods: a review. Sci Total Environ 647:210–222. (PMID: 10.1016/j.scitotenv.2018.07.402) ; Lima DR, Lima EC, Thue PS et al (2021) Comparison of acidic leaching using a conventional and ultrasound-assisted method for preparation of magnetic-activated biochar. J Environ Chem Eng 9:105865. (PMID: 10.1016/j.jece.2021.105865) ; Nuanhchamnong C, Kositkanawuth K, Wantaneeyakul N (2022) Granular waterworks sludge-biochar composites: characterization and dye removal application. Results Eng 14:100451. (PMID: 10.1016/j.rineng.2022.100451) ; Odeyemi SO, Iwuozor KO, Emenike EC et al (2023) Valorization of waste cassava peel into biochar: an alternative to electrically-powered process. Total Environ Res Themes 6:100029. (PMID: 10.1016/j.totert.2023.100029) ; Oghenejoboh KM (2015) Effects of cassava wastewater on the quality of receiving water bodies intended for fish farming. Brazil J Appl Sci Technol 6:164. (PMID: 10.9734/BJAST/2015/14356) ; Oghenejoboh KM, Orugba HO, Oghenejoboh UM et al (2021) Value-added cassava waste management and environmental sustainability in Nigeria: a review. Environ Challenges 4:100127. (PMID: 10.1016/j.envc.2021.100127) ; Oliveira FJS, Santana DS, Costa SSB et al (2017) Generation, characterization, and reuse of solid wastes from a biodiesel production plant. Waste Manag 61:87–95. (PMID: 10.1016/j.wasman.2016.11.035) ; Oyekanmi AA, Ahmad A, Hossain K et al (2019) Statistical optimization for adsorption of Rhodamine B dye from aqueous solutions. J Mol Liq 281:48–58. (PMID: 10.1016/j.molliq.2019.02.057) ; Qiu H, Lv L, Pan BC et al (2009) Critical review in adsorption kinetic models. J Zheijang Univ Sci A 10:716–724. (PMID: 10.1631/jzus.A0820524) ; Revankar MS, Lele SS (2007) Synthetic dye decolorization by Ganoderma sp., WR-1. Bioresour Technol 98:775–780. (PMID: 10.1016/j.biortech.2006.03.020) ; Rovina K, Prabakaran PP, Siddiquee S (2016) Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products-a review. Anal Chem 85:47–56. ; Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley & Sons, New York. ; Schio RDR, Martinello KB, Netto MS et al (2022) Adsorption performance of Food Red 17 dye using an eco-friendly material based on Luffa cylindrica and chitosan. J Mol Liq 349:118144. (PMID: 10.1016/j.molliq.2021.118144) ; Shahinpour A, Tanhaei B, Ayati A et al (2022) Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 366:120303. (PMID: 10.1016/j.molliq.2022.120303) ; Shen D, Fan J, Zhou W et al (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J Hazard Mater 172:99–107. (PMID: 10.1016/j.jhazmat.2009.06.139) ; Shin J, Kwak J, Lee YG et al (2021) Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: contribution of hydrophobic and π-π interactions. Environ Pollut 270:116244. (PMID: 10.1016/j.envpol.2020.116244) ; Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. John Wiley & Sons Inc, New Jersey. ; Subbareddy Y, Kumar RN, Sudhakar BK, Reddy KR, Martha SK, Kaviyarasu K (2020) A facile approach of adsorption of acid blue 9 on aluminium silicate-coated Fuller’s Earth––Equilibrium and kinetics studies. Surfaces and Interfaces. 19. ; Thapsamut T, Punsuvon V, Areeprasert C (2023) Fabrication of waste-derived porous geopolymer by community-scale carbonization and steam activation with potential copper adsorption. Waste Manag 166:325–335. (PMID: 10.1016/j.wasman.2023.05.004) ; Thommes M, Kaneko K, Neimark AV et al (2015a) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. (PMID: 10.1515/pac-2014-1117) ; Thommes M, Kaneko K, Neimark AV et al (2015b) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. (PMID: 10.1515/pac-2014-1117) ; Tran HN, You SJ, Chao HP (2017) Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J Environ Manag 188:322–336. (PMID: 10.1016/j.jenvman.2016.12.003) ; Vanni G, Escudero LB, Dotto GL (2017) Powdered grape seeds (PGS) as an alternative biosorbent to remove pharmaceutical dyes from aqueous solutions. Water Sci Technol 76:1177–1187. (PMID: 10.2166/wst.2017.307) ; Vieira MGA, Gimenes ML, Godoy RPS et al (2018) Cassava (Manihot esculenta Crantz) stump biochar: physical/chemical characteristics and dye affinity. Chem Eng Commun 206:1–13. ; Wu J, Yang J, Huang G et al (2020) Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. J Clean Prod 251:119717. (PMID: 10.1016/j.jclepro.2019.119717) ; Xu Z, He M, Xu X et al (2021) Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresour Technol 338:125555. (PMID: 10.1016/j.biortech.2021.125555) ; Zazycki MA, Godinho M, Perondi D et al (2018) New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J Clean Prod 171:57–65. (PMID: 10.1016/j.jclepro.2017.10.007) ; Zdravkov BD, Čermák JJ, Šefara M et al (2007) Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem 5:385–395. ; Zhang M, Lin K, Zhong Y et al (2022) Functionalizing biochar by Co-pyrolysis shaddock peel with red mud for removing acid orange 7 from water. Environ Pollut 299:118893. (PMID: 10.1016/j.envpol.2022.118893) ; Zhou Y, Liu X, Xiang Y et al (2017) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modeling. Bioresour Technol 245:266–273. (PMID: 10.1016/j.biortech.2017.08.178) ; Zornoza R, Moreno-Barriga F, Acosta JA et al (2016) Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 144:122–130. (PMID: 10.1016/j.chemosphere.2015.08.046)
  • Contributed Indexing: Keywords: Adsorption; Binary system; Dyes; Modified biochar
  • Substance Nomenclature: 0 (Coloring Agents) ; 0 (biochar) ; 9006-97-7 (bagasse) ; H3R47K3TBD (brilliant blue) ; 0 (Water Pollutants, Chemical) ; 16291-96-6 (Charcoal) ; 25956-17-6 (Allura Red AC Dye) ; 0 (Azo Compounds) ; 0 (Benzenesulfonates) ; 9004-34-6 (Cellulose)
  • Entry Date(s): Date Created: 20231219 Date Completed: 20240122 Latest Revision: 20240202
  • Update Code: 20240202

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -