Zum Hauptinhalt springen

Glyphosate spraying exacerbates nitrogen and phosphorus loss in karst slope farmland.

Zhang, Y ; Yan, Y ; et al.
In: Environmental monitoring and assessment, Jg. 196 (2023-12-23), Heft 1, S. 80
Online academicJournal

Titel:
Glyphosate spraying exacerbates nitrogen and phosphorus loss in karst slope farmland.
Autor/in / Beteiligte Person: Zhang, Y ; Yan, Y ; Dai, Q ; Tan, J ; Wang, C ; Zhou, H ; Hu, Z
Link:
Zeitschrift: Environmental monitoring and assessment, Jg. 196 (2023-12-23), Heft 1, S. 80
Veröffentlichung: 1998- : Dordrecht : Springer ; <i>Original Publication</i>: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-, 2023
Medientyp: academicJournal
ISSN: 1573-2959 (electronic)
DOI: 10.1007/s10661-023-12238-x
Schlagwort:
  • Farms
  • Nitrogen analysis
  • Ecosystem
  • Environmental Monitoring
  • Soil chemistry
  • China
  • Rain
  • Water Movements
  • Phosphorus analysis
  • Glyphosate
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Monit Assess] 2023 Dec 23; Vol. 196 (1), pp. 80. <i>Date of Electronic Publication: </i>2023 Dec 23.
  • MeSH Terms: Phosphorus* / analysis ; Glyphosate* ; Farms ; Nitrogen / analysis ; Ecosystem ; Environmental Monitoring ; Soil / chemistry ; China ; Rain ; Water Movements
  • References: Bahddou, S., Otten, W., Whalley, W.R., Shin, H., El Gharous, M., & Rickson RJ.(2023). Changes in soil surface properties under simulated rainfall and the effect of surface roughness on runoff, infiltration and soil loss. Geoderma ,431, 116341. https://doi.org/10.1016/j.geoderma.2023.116341 . ; Balestra, V., Vigna, B., De Costanzo, S., & Bellopede R.(2023). Preliminary investigations of microplastic pollution in karst systems, from surface watercourses to cave waters. Journal of Contaminant Hydrology, 252, 104117. https://doi.org/10.1016/j.jconhyd.2022.104117 . ; Bento, C. P. M., Goossens, D., Rezaei, M., Riksen, M., Mol, H. G. J., Ritsema, C. J., et al. (2017). Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. Environmental Pollution, 220, 1079–1089. https://doi.org/10.1016/j.envpol.2016.11.033. (PMID: 10.1016/j.envpol.2016.11.033) ; Bhaskara, B. L., & Nagaraja, P. (2006). Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples. Helvetica Chimica Acta, 89(11), 2686–2693. https://doi.org/10.1002/hlca.200690240. (PMID: 10.1002/hlca.200690240) ; Chang, Y. J., & Zhu, D. (2021). Water security of the megacities in the Yangtze River basin: Comparative assessment and policy implications. Journal of Cleaner Production, 290, 125812. https://doi.org/10.1016/j.jclepro.2021.125812. (PMID: 10.1016/j.jclepro.2021.125812) ; Chen, W., Zeng, F. M., Liu, W., Bu, J. W., Hu, G. F., Xie, S. S., et al. (2021). Organochlorine pesticides in karst soil: Levels, distribution, and source diagnosis. International Journal of Environmental Research and Public Health, 18(21), e11589. https://doi.org/10.3390/ijerph182111589. (PMID: 10.3390/ijerph182111589) ; Chávez-Ortiz, P., Tapia-Torres, Y., Larsen, J., & García-Oliva, F. (2022). Glyphosate-based herbicides alter soil carbon and phosphorus dynamics and microbial activity. Applied Soil Ecology, 169, 104256. https://doi.org/10.1016/j.apsoil.2021.104256. (PMID: 10.1016/j.apsoil.2021.104256) ; Connolly, A., Jones, K., Basinas, I., Galea, K. S., Kenny, L., Mcgowan, P., et al. (2019). International Journal of Hygiene and Environmental Health, 222(2), 205–210. https://doi.org/10.1016/j.ijheh.2018.09.004. (PMID: 10.1016/j.ijheh.2018.09.004) ; Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68(1), 16–30. https://doi.org/10.1002/ps.2212. (PMID: 10.1002/ps.2212) ; Dai, Q. H., Peng, X. D., Yang, Z., & Zhao, L. S. (2017). Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area. CATENA, 152, 218–226. https://doi.org/10.1016/j.catena.2017.01.013. (PMID: 10.1016/j.catena.2017.01.013) ; De Gerónimo, E., & Aparicio, V. C. (2022). Changes in soil pH and addition of inorganic phosphate affect glyphosate adsorption in agricultural soil. European Journal of Soil Science, 73, 13188. https://doi.org/10.1111/ejss.13188. (PMID: 10.1111/ejss.13188) ; Ford, D., & Williams, P., (2015). Karst hydrogeology and geomorphology /[Rev. ed.]. New York: Wiley. https://doi.org/10.1002/9781118684986 . ; Gan, F., He, B., Qin, Z., & Li, W. (2021). Contribution of bedrock dip angle impact to nitrogen and phosphorus leakage loss under artificial rainfall simulations on slopes parallel to and perpendicular to the bedrock dip in a karst trough valley. CATENA, 196, 104884. https://doi.org/10.1016/j.catena.2020.104884. (PMID: 10.1016/j.catena.2020.104884) ; Gao, J., Xiong, L.F., Ruan, J.M., Zeng, X.L., & Liang, X.M.R. (2022). Esearch progress on the water environmental behavior of glyphosate and its toxicity to aquatic organisms.Asian Journal of Ecotoxicology, 17(03), 422–433.(in Chinese). ; Gao, R. X., Dai, Q. H., Gan, Y. X., Peng, X. D., & Yan, Y. W. (2019). The production processes and characteristics of nitrogen pollution in bare sloping farmland in a karst region. Environmental Science and Pollution Research, 26(26), 26900–26911. https://doi.org/10.1007/s11356-019-05838-z. (PMID: 10.1007/s11356-019-05838-z) ; Geng, Y., Jiang, L. J., Zhang, D. Y., Liu, B. J., Zhang, J. G., Cheng, H. Y., et al. (2021). Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. Science of the Total Environment, 769, 144396. https://doi.org/10.1016/j.scitotenv.2020.144396. (PMID: 10.1016/j.scitotenv.2020.144396) ; Guo, F. Y., Zhou, M., Xu, J. C., Fein, J. B., Yu, Q., Wang, Y. W., et al. (2021). Glyphosate adsorption onto kaolinite and kaolinite-humic acid composites: Experimental and molecular dynamics studies. Chemosphere, 263, 127979. https://doi.org/10.1016/j.chemosphere.2020.127979. (PMID: 10.1016/j.chemosphere.2020.127979) ; Hatti, V.R.B.K. (2018). Soil properties and productivity of rainfed finger millet under conservation tillage and nutrient management in Eastern dry zone of Karnataka. Journal of Environmental Biology, 39(5), 612–624. https://doi.org/10.22438/jeb/39/5/MRN-724 . ; Hébert, M., Fugère, V., & Gonzalez, A. (2019). The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Frontiers in Ecology and the Environment, 17(1), 48–56. https://doi.org/10.1002/fee.1985. (PMID: 10.1002/fee.1985) ; Hernández-Zamora, M., Rodríguez-Miguel, A., Martínez-Jerónimo, L., & Martínez-Jerónimo, F. (2023). Combined toxicity of glyphosate (Faena®) and copper to the American cladoceran Daphnia exilis—A two-generation analysis. Water, 15(11), 2018. (PMID: 10.3390/w15112018) ; Jaime, R., & Ricardo, D. C. (2017). Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research & Public Health, 14(6), 595. https://doi.org/10.3390/ijerph14060595. (PMID: 10.3390/ijerph14060595) ; Jiang, S. H., Wang, J. F., Wu, F. X., Xu, S., Liu, J. L., & Chen, J. G. (2023). Extensive abundances and characteristics of microplastic pollution in the karst hyporheic zones of urban rivers. Science of the Total Environment, 857, 159616. https://doi.org/10.1016/j.scitotenv.2022.159616. (PMID: 10.1016/j.scitotenv.2022.159616) ; Jiao, X.H,, Peng, T., Li, SH., Zhang, L., Gu, Z.K., Zhang, X.B., Wang, S.J. (2023). Preliminary research on the threshold erosive rainfall on karst slopes. Journal of Soil and Water Conservation,37(5): 57–63. https://doi.org/10.13870/j.cnki.stbcxb.2023.05.007 . ; Li, C. S., Li, Y. J., Li, Q., Duan, J. L., Hou, J. Y., Hou, Q., et al. (2021). Regenerable magnetic aminated lignin/Fe3O4/La(OH)3 adsorbents for the effective removal of phosphate and glyphosate. Science of the Total Environment, 788, 147812. https://doi.org/10.1016/j.scitotenv.2021.147812. (PMID: 10.1016/j.scitotenv.2021.147812) ; Liu, J., Elliott, J. A., Wilson, H. F., & Baulch, H. M. (2019). Impacts of soil phosphorus drawdown on snowmelt and rainfall runoff water quality. Journal of Environmental Quality, 48(4), 803–812. https://doi.org/10.2134/jeq2018.12.0437. (PMID: 10.2134/jeq2018.12.0437) ; Long, Y., & Qian, Q. (2019). Assessing the effects of climate change on water quality of plateau deep-water lake - A study case of Hongfeng Lake. Science of the Total Environment, 647, 1518–1530. https://doi.org/10.1016/j.scitotenv.2018.08.031. (PMID: 10.1016/j.scitotenv.2018.08.031) ; Martínez-Mena, M., Carrillo-López, E., Boix-Fayos, C., Almagro, M., García Franco, N., Díaz-Pereira, E., et al. (2019). Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena, 187(C),133:16–24. https://doi.org/10.1016/j.catena.2019.104352 . ; Meng, X. R., Song, Q. M., Wang, F., Tang, S. Y., & Zhang, Y. P. (2021). Research progress on the behavior and toxicity of glyphosate and glyphosate ammonium in water environments. Asian Journal of Ecotoxicology, 16(03), 144–154. (in Chinese). ; Okada, E., Allinson, M., Barral, M. P., Clarke, B., & Allinson, G. (2020). Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne Australia. Water Research, 168, 115139. https://doi.org/10.1016/j.watres.2019.115139. (PMID: 10.1016/j.watres.2019.115139) ; Padilla, J.T., & Selim, H.M. (2020). Environmental behavior of glyphosate in soils.Advances in Agronomy, 159,1–34. ; Panettieri, M., Lazaro, L., López-Garrido, R., Murillo, J. M., & Madejón, E. (2013). Glyphosate effect on soil biochemical properties under conservation tillage. Soil and Tillage Research, 133, 16–24. https://doi.org/10.1016/j.still.2013.05.007. (PMID: 10.1016/j.still.2013.05.007) ; Peng, X. D., Dai, Q. H., & Li, C. L. (2017). Research progress on the process and mechanisms of soil water loss or leakage on slope in the southwest karst of China. Journal of Soil and Water Conservation, 31(05), 1–8. ; Qian, Y., Sun, L., Chen, D. K., Liao, J. F., Tang, L. N., & Sun, Q. (2021). The response of the migration of non-point source pollution to land use change in a typical small watershed in a semi-urbanized area. Science of the Total Environment, 785, 147387. https://doi.org/10.1016/j.scitotenv.2021.147387. (PMID: 10.1016/j.scitotenv.2021.147387) ; Romano-Armada, N., Amoroso, M.J.B. & Rajal, V. (2017). Effect of glyphosate application on soil quality and health under natural and zero tillage field condition. Plant Soil and Environment, 36(2), 141–154. https://doi.org/10.25252/SE/17/51241 . ; Saunders, L., & Pezeshki, R. (2015). Glyphosate in runoff waters and in the root-zone: A review. Toxics, 3(4), 462–480. https://doi.org/10.3390/toxics3040462. (PMID: 10.3390/toxics3040462) ; Sihtmäe, M., Blinova, I., Künnis-Beres, K., Kanarbik, L., Heinlaan, M., & Kahru, A. (2013). Ecotoxicological effects of different glyphosate formulations. Applied Soil Ecology, 72, 215–224. https://doi.org/10.1016/j.apsoil.2013.07.005. (PMID: 10.1016/j.apsoil.2013.07.005) ; Soares, C., Pereira, R., Spormann, S., & Fidalgo, F. (2019). Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants? – Evaluation of oxidative damage and antioxidant responses in tomato. Environmental Pollution, 247, 256–265. https://doi.org/10.1016/j.envpol.2019.01.063. (PMID: 10.1016/j.envpol.2019.01.063) ; Stosiek, N., Terebieniec, A., Ząbek, A., Młynarz, P., Cieśliński, H., & Klimek-Ochab, M. (2019). N-phosphonomethylglycine utilization by the psychrotolerant yeast Solicoccozyma terricola M 3.1.4. Bioorganic Chemistry, 93, 102866. ; Sun, M. J., Li, H., & Jaisi, D. P. (2019). Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water Research, 163, 114840. https://doi.org/10.1016/j.watres.2019.07.007. (PMID: 10.1016/j.watres.2019.07.007) ; Wang, M., Orr, A. A., He, S., Dalaijamts, C., Chiu, W. A., Tamamis, P., & Phillips, T. D. (2019). Montmorillonites can tightly bind glyphosate and paraquat reducing toxin exposures and toxicity. ACS Omega, 4(18), 17702–17713. (PMID: 10.1021/acsomega.9b02051) ; Wang, N., Zhang, H., Wang, H., & Zhang, Z. (2004). Spatial analysis of soil erosion and non-point source pollution based on GIS in Erlong Lake watershed Jilin Province. Chinese Geographical Science, 14(4), 355–360. (PMID: 10.1007/s11769-004-0041-z) ; Wang, S. H., Wang, Y. Q., Wang, Y. J., & Wang, Z. (2022). Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed. Ecological Indicators, 141, 109084. https://doi.org/10.1016/j.ecolind.2022.109084. (PMID: 10.1016/j.ecolind.2022.109084) ; Woniak, A., & Gos, M. (2014). Yield and quality of spring wheat and soil properties as affected by tillage system[J].Plant Soil and Environment, 60(4),141–145. https://doi.org/10.2478/intag-2014-0015 . ; Wu, X., Gao, X. B., Tan, T., Li, C. C., Yan, R. Y., Chi, Z. Y., et al. (2021). Sources and pollution path identification of PAHs in karst aquifers: An example from Liulin karst water system, northern China. Journal of Contaminant Hydrology, 241, 103810. https://doi.org/10.1016/j.jconhyd.2021.103810. (PMID: 10.1016/j.jconhyd.2021.103810) ; Yan, Y. J., Dai, Q. H., Yuan, Y., Peng, X. D., Zhao, L. S., & Yang, J. (2018). Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China. Geoderma, 330, 30–40. https://doi.org/10.1016/j.geoderma.2018.05.026. (PMID: 10.1016/j.geoderma.2018.05.026) ; Yan, Y. J., Dai, Q. H., Yang, Y. Q., & Lan, X. (2023). Effects of vegetation restoration types on soil erosion reduction of a shallow karst fissure soil system in the degraded karst areas of Southwestern China. Land Degradation & Development, 34(8), 2241–2255. https://doi.org/10.1002/ldr.4603. (PMID: 10.1002/ldr.4603) ; Yang, J., Liang, J. P., Yang, G. H., Feng, Y. Z., Ren, G. G., Ren, C. G., et al. (2020). Characteristics of non-point source pollution under different land use types. Sustainability, 12(5), 2012. https://doi.org/10.3390/su12052012. (PMID: 10.3390/su12052012) ; Yang, X. M., Wang, F., Bento, C. P.M., Xue, S., Gai, L.T., van Dam, R., et al. (2015). Short-term transport of glyphosate with erosion in Chinese loess soil — A flume experiment. Science of The Total Environment,512–513. https://doi.org/10.1016/j.scitotenv.2015.01.071 . ; Yang, Y. J., & Zhang, B. (2021). Overview and trends in the development of global amino acid herbicides in 2021. World Pesticides, 43(04), 19–34. (in Chinese). ; Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. Applied Microbiology and Biotechnology, 102(12), 5033–5043. (PMID: 10.1007/s00253-018-9035-0) ; Zhang, Y., Zhang, X., Bi, Z., Yu, Y., Shi, P., Ren, L., & Shan, Z. (2020). The impact of land use changes and erosion process on heavy metal distribution in the hilly area of the Loess Plateau. China. Science of the Total Environment, 718, 137305. (PMID: 10.1016/j.scitotenv.2020.137305) ; Zhang, J., Chen, H. S., Fu, Z. Y., Luo, Z. D., Wang, F., & Wang, K. L. (2022). Effect of soil thickness on rainfall infiltration and runoff generation from karst hillslopes during rainstorms. European Journal of Soil Science, 73(4), e13288. https://doi.org/10.1111/ejss.13288. (PMID: 10.1111/ejss.13288) ; Zhao, H. L., Zheng, J. X., Zhu, Y. K., Li, L. Y., & Cai, X. T. (2022). Risk assessment of nonpoint source pollution in the Huaihe River Basin. Water, 14(21), 3505. https://doi.org/10.3390/w14213505. (PMID: 10.3390/w14213505) ; Zhou, C., Wang, Y., Li, C., Sun, R., Yu, Y., & Zhou, D. (2013a). Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida). Environmental Pollution, 180, 71–77. (PMID: 10.1016/j.envpol.2013.05.016) ; Zhou, C. F., Lin, J. W., Li, Y., & Liu, A. Q. (2016). Effect of glyphosate on inorgancic phosphorus transformation in soil. Journal of Northwest Forestry University, 31(06), 71–77. ; Zhu, Y.G., Chen, L., Wei, G.Y., Li, S., & Shen, Z.Y. (2019). Uncertainty assessment in baseflow nonpoint source pollution prediction: The impacts of hydrographic separation methods, data sources and baseflow period assumptions. Journal of Hydrology,574.915–925. https://doi.org/10.1016/j.jhydrol.2019.05.010 .
  • Grant Information: 42167044 Regional Fund of National Natural Science Foundation of China; 42007067 National Natural Science Foundation of China; [2020]1Y176 Science and Technology Plan Project of Guizhou Province; KT202205 Guizhou Provincial Water Conservancy Science and Technology Projects
  • Contributed Indexing: Keywords: Agricultural non-point source pollution; Glyphosate; Karst slope farmland; Nitrogen; Phosphorus
  • Substance Nomenclature: 27YLU75U4W (Phosphorus) ; 4632WW1X5A (Glyphosate) ; N762921K75 (Nitrogen) ; 0 (Soil)
  • Entry Date(s): Date Created: 20231223 Date Completed: 20231225 Latest Revision: 20240112
  • Update Code: 20240113

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -