Zum Hauptinhalt springen

A dynamic spatiotemporal model for fall warning and protection.

Xu, S ; Yang, Z ; et al.
In: Medical & biological engineering & computing, Jg. 62 (2024-04-01), Heft 4, S. 1061-1076
Online academicJournal

Titel:
A dynamic spatiotemporal model for fall warning and protection.
Autor/in / Beteiligte Person: Xu, S ; Yang, Z ; Wang, D ; Tang, Y ; Lin, J ; Gu, Z ; Ning, G
Link:
Zeitschrift: Medical & biological engineering & computing, Jg. 62 (2024-04-01), Heft 4, S. 1061-1076
Veröffentlichung: New York, NY : Springer ; <i>Original Publication</i>: Stevenage, Eng., Peregrinus., 2024
Medientyp: academicJournal
ISSN: 1741-0444 (electronic)
DOI: 10.1007/s11517-023-02999-5
Schlagwort:
  • Humans
  • Aged
  • Motion
  • Biomechanical Phenomena
  • Healthy Volunteers
  • Algorithms
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Med Biol Eng Comput] 2024 Apr; Vol. 62 (4), pp. 1061-1076. <i>Date of Electronic Publication: </i>2023 Dec 23.
  • MeSH Terms: Algorithms* ; Humans ; Aged ; Motion ; Biomechanical Phenomena ; Healthy Volunteers
  • References: Alghwiri AA, Whitney SL (2012) Geriatric physical therapy. Mosby, Saint Louis, p 353. ; Rubenstein LZ (2006) Falls in older people: epidemiology, risk factors and strategies for prevention, (in English). Age Ageing 35:37–41. (PMID: 10.1093/ageing/afl084) ; Xu T, Zhou Y, Zhu J (2018) New advances and challenges of fall detection systems: a survey. Appl Sci Basel 8(3):418. (PMID: 10.3390/app8030418) ; Wang Y, Wu K, Ni LM (2016) Wifall: Device-free fall detection by wireless networks. IEEE Trans Mob Comput 16(2):581–594. (PMID: 10.1109/TMC.2016.2557792) ; Tzeng H-W, Chen M-Y, Chen J-Y (2010) Design of fall detection system with floor pressure and infrared image. In: 2010 International Conference on System Science and Engineering, pp 131–135: IEEE. ; Makhlouf A, Boudouane I, Saadia N, Cherif AR (2019) Ambient assistance service for fall and heart problem detection. J Ambient Intell Humanized Comput 10(4):1527–1546. (PMID: 10.1007/s12652-018-0724-4) ; Wang J, Zhang ZQ, Li B, Lee S, Sherratt RS (2014) An enhanced fall detection system for elderly person monitoring using consumer home networks. IEEE Trans Consum Electron 60(1):23–29. (PMID: 10.1109/TCE.2014.6780921) ; Dang TN, Le TK, Hong TP, Nguyen V (2021) Fast and accurate fall detection and warning system using image processing technology. In: International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 2021, pp 207–210. ; Saadeh W, Butt SA, Bin Altaf MA (2019) A patient-specific single sensor IoT-based wearable fall prediction and detection system. IEEE Trans Neural Syst Rehabil Eng 27(5):995–1003. (PMID: 3099847310.1109/TNSRE.2019.2911602) ; Al Nahian MJ et al (2021) Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features. IEEE Access 9:39413–39431. (PMID: 10.1109/ACCESS.2021.3056441) ; Panahi L, Ghods V (2018) Human fall detection using machine vision techniques on RGB-D images. Biomed Signal Process Control 44:146–153. (PMID: 10.1016/j.bspc.2018.04.014) ; Min WD, Yao LY, Lin ZR, Liu L (2018) Support vector machine approach to fall recognition based on simplified expression of human skeleton action and fast detection of start key frame using torso angle. IET Comput Vision 12(8):1133–1140. (PMID: 10.1049/iet-cvi.2018.5324) ; Hu XY, Qu XD (2016) Pre-impact fall detection. Biomed Eng Online 15:61. (PMID: 27251528488865410.1186/s12938-016-0194-x) ; Yajai A, Rasmequan S (2017) Adaptive directional bounding box from RGB-D information for improving fall detection. J Vis Commun Image Represent 49:257–273. (PMID: 10.1016/j.jvcir.2017.08.008) ; Chen W, Jiang Z, Guo H, Ni XJS (2020) Fall detection based on key points of human-skeleton using openpose. Symmetry 12(5):744. (PMID: 10.3390/sym12050744) ; Tamura T, Yoshimura T, Sekine M, Uchida M, Tanaka O (2009) A wearable airbag to prevent fall injuries. IEEE Trans Inf Technol Biomed 13(6):910–914. (PMID: 1984637910.1109/TITB.2009.2033673) ; Ahn S et al (2018) Optimization of a pre-impact fall detection algorithm and development of hip protection airbag system. Sensors Mater 30:1743–1752. (PMID: 10.18494/SAM.2018.1876) ; Yao M et al (2015) A wearable pre-impact fall early warning and protection system based on MEMS inertial sensor and GPRS communication. In: 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN), pp 1–6: IEEE. ; Choi W, Wakeling J, Robinovitch S (2015) Kinematic analysis of video-captured falls experienced by older adults in long-term care. J Biomech 48(6):911–920. (PMID: 2576973010.1016/j.jbiomech.2015.02.025) ; Vallee P, Tisserand R, Robert T (2015) Possible recovery or unavoidable fall? A model to predict the one step balance recovery threshold and its stepping characteristics. J Biomech 48(14):3905–3911. (PMID: 2660237110.1016/j.jbiomech.2015.09.024) ; Cyr M-A, Smeesters C (2009) Kinematics of the threshold of balance recovery are not affected by instructions limiting the number of steps in younger adults. Gait Posture 29(4):628–633. (PMID: 1924394810.1016/j.gaitpost.2009.01.011) ; Smeesters C, Hayes WC, McMahon TA (2001) The threshold trip duration for which recovery is no longer possible is associated with strength and reaction time. J Biomech 34(5):589–595. (PMID: 1131169910.1016/S0021-9290(01)00005-7) ; Xu T, Zhou Y (2018) Elders’ fall detection based on biomechanical features using depth camera. Int J Wavelets Multiresolution Inf Process 16(02):1840005. (PMID: 10.1142/S0219691318400052) ; Lugade V, Lin V, Chou L-S (2011) Center of mass and base of support interaction during gait. Gait Posture 33(3):406–411. (PMID: 2121197710.1016/j.gaitpost.2010.12.013) ; Hof AL, Gazendam MGJ, Sinke WE (2005) The condition for dynamic stability, (in English). J Biomech 38(1):1–8. (PMID: 1551933310.1016/j.jbiomech.2004.03.025) ; Bi QL et al (2017) An automatic camera calibration method based on checkerboard. Traitement Du Signal 34(3–4):209–226. (PMID: 10.3166/ts.34.209-226) ; Albert JA, Owolabi V, Gebel A, Brahms CM, Granacher U, Arnrich B (2020) Evaluation of the pose tracking performance of the Azure Kinect and Kinect v2 for gait analysis in comparison with a gold standard: a pilot study. Sensors 20(18):5104. (PMID: 32911651757121310.3390/s20185104) ; Manghisi VM et al (2020) A body tracking-based low-cost solution for monitoring workers’ hygiene best practices during pandemics. Sensors 20(21):6149. (PMID: 33138092766349310.3390/s20216149) ; Romeo L, Marani R, Malosio M, Perri AG, D'Orazio T, and Ieee (2021) Performance Analysis of Body Tracking with the Microsoft Azure Kinect. In: 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 2021, pp 572–577. ; Berg WP, Alessio HM, Mills EM, Tong C (1997) Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 26(4):261–268. (PMID: 927128810.1093/ageing/26.4.261) ; Roudsari BS, Ebel BE, Corso PS, Molinari NAM, Koepsell TD (2005) The acute medical care costs of fall-related injuries among the US older adults. Injury-Int J Care Injured 36(11):1316–1322. (PMID: 10.1016/j.injury.2005.05.024) ; Roos PE, McGuigan MP, Trewartha G (2010) The role of strategy selection, limb force capacity and limb positioning in successful trip recovery. Clin Biomech 25(9):873–878. (PMID: 10.1016/j.clinbiomech.2010.06.016) ; King ST, Eveld ME, Martinez A, Zelik KE, Goldfarb M (2019) A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery. J Neuroengineering Rehabil 16:69. (PMID: 10.1186/s12984-019-0527-7) ; Shirota C, Simon AM, Kuiken TA (2014) Trip recovery strategies following perturbations of variable duration. J Biomech 47(11):2679–2684. (PMID: 2489402410.1016/j.jbiomech.2014.05.009) ; van Dieen JH, Pijnappels M, Bobbert MF (2005) Age-related intrinsic limitations in preventing a trip and regaining balance after a trip. Saf Sci 43(7):437–453. (PMID: 10.1016/j.ssci.2005.08.008) ; Pijnappels M, Reeves ND, Maganaris CN, Van Dieen JH (2008) Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly. J Electromyogr Kinesiol 18(2):188–196. (PMID: 1776143610.1016/j.jelekin.2007.06.004) ; Chen SH, Liu BA, Feng C, Vallespi-Gonzalez C, Wellington C (2021) 3D point cloud processing and learning for autonomous driving: impacting map creation, localization, and perception. IEEE Signal Process Mag 38(1):68–86. (PMID: 10.1109/MSP.2020.2984780) ; Soomro K, Idrees H, Shah M (2018) Online localization and prediction of actions and interactions. IEEE Trans Pattern Anal Mach Intell 41(2):459–472. (PMID: 2999460010.1109/TPAMI.2018.2797266) ; Ghosh P, Song J, Aksan E, Hilliges O, and Ieee (2017) Learning human motion models for long-term predictions. In: International Conference on 3D Vision (3DV), Qingdao, Canada, 2017, pp 458–466. ; Jin X, Guo J, Li Z, Wang RH (2020) Motion prediction of human wearing powered exoskeleton. Math Probl Eng 2020:8899880. (PMID: 10.1155/2020/8899880) ; Xu Z, Wang Y, Long M, Wang J, KLiss M (2018) PredCNN: predictive learning with cascade convolutions. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp 2940–2947. ; Liu XL, Yin JQ, Liu J, Ding PX, Liu J, Liu HP (2021) TrajectoryCNN: a new spatio-temporal feature learning network for human motion prediction. IEEE Trans Circuits Syst Video Technol 31(6):2133–2146. (PMID: 10.1109/TCSVT.2020.3021409) ; Fragkiadaki K, Levine S, Felsen P, Malik J (2015) Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, pp 4346–4354. ; Cheng Y, Zhao W, Liu C, Tomizuka M (2019) Human motion prediction using semi-adaptable neural networks. In: 2019 American Control Conference (ACC), pp 4884–4890: IEEE. ; Liu RX, Liu CL (2021) Human motion prediction using adaptable recurrent neural networks and inverse kinematics. IEEE Control Syst Lett 5(5):1651–1656. (PMID: 10.1109/LCSYS.2020.3042609) ; Melzer I, Kurz I, Shahar D, Levi M, Oddsson L (2007) Application of the voluntary step execution test to identify elderly fallers. Age Ageing 36(5):532–537. (PMID: 1754520710.1093/ageing/afm068) ; Tisserand R, Robert T, Chabaud P, Bonnefoy M, Cheze L (2016) Elderly fallers enhance dynamic stability through anticipatory postural adjustments during a choice stepping reaction time. Front Human Neurosci 10:613. (PMID: 10.3389/fnhum.2016.00613) ; Paolo DL (1996) Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters, (in English). J Biomech 29(9):1223–1230. (PMID: 10.1016/0021-9290(95)00178-6) ; Pavol MJ, Owings TM, Foley KT, Grabiner MD (2001) Mechanisms leading to a fall from an induced trip in healthy older adults. J Gerontol Ser a-Biol Sci Med Sci 56(7):M428–M437. ; Pijnappels M, Bobbert MF, van Dieen JH (2004) Contribution of the support limb in control of angular momentum after tripping. J Biomech 37(12):1811–1818. (PMID: 1551958810.1016/j.jbiomech.2004.02.038) ; Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. (PMID: 10.1109/4235.996017) ; Charfi I, Miteran J, Dubois J, Atri M, Tourki R (2013) Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification. J Electron Imaging 22(4):041106. (PMID: 10.1117/1.JEI.22.4.041106) ; Hsiao ET, Robinovitch SN (1999) Biomechanical influences on balance recovery by stepping, (in English). J Biomech 32(10):1099–1106. (PMID: 1047684810.1016/S0021-9290(99)00104-9) ; Li M, Xu G, He B, Ma X, Xie J (2018) Pre-impact fall detection based on a modified zero moment point criterion using data from Kinect sensors. IEEE Sens J 18(13):5522–5531. (PMID: 10.1109/JSEN.2018.2833451) ; Rescio G, Leone A, Siciliano P (2018) Supervised machine learning scheme for electromyography-based pre-fall detection system. Expert Syst Appl 100:95–105. (PMID: 10.1016/j.eswa.2018.01.047) ; Lee CM, Park J, Park S, Kim CH (2020) Fall-detection algorithm using plantar pressure and acceleration data. Int J Precis Eng Manuf 21(4):725–737. (PMID: 10.1007/s12541-019-00268-w) ; Jung H, Koo B, Kim J, Kim T, Nam Y, Kim Y (2020) Enhanced algorithm for the detection of preimpact fall for wearable airbags. Sensors 20(5):1277. (PMID: 32111090708577010.3390/s20051277) ; Yu X, Jang J, Xiong S (2021) A large-scale open motion dataset (KFall) and benchmark algorithms for detecting pre-impact fall of the elderly using wearable inertial sensors. Front Aging Neurosci 13:692865. (PMID: 34335231832272910.3389/fnagi.2021.692865) ; de Sousa F, Escriba C, Bravo EGA, Brossa V, Fourniols JY, Rossi C (2022) Wearable pre-impact fall detection system based on 3D accelerometer and subject’s height. IEEE Sens J 22(2):1738–1745. (PMID: 10.1109/JSEN.2021.3131037) ; Neptune RR, Vistamehr A (2019) Dynamic balance during human movement: measurement and control mechanisms, (in English). J Biomech Eng Trans Asme 141(7):070801. (PMID: 10.1115/1.4042170)
  • Grant Information: 2022YFC2009500 National Key Research and Development Program of China; 2022ND0AC01 Key Research Project of Zhejiang Lab
  • Contributed Indexing: Keywords: Balance recovery model; Fall Point; Fall warning; Imbalance Point; Motion prediction
  • Entry Date(s): Date Created: 20231223 Date Completed: 20240320 Latest Revision: 20240320
  • Update Code: 20240320

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -