Zum Hauptinhalt springen

Automated identification of protein expression intensity and classification of protein cellular locations in mouse brain regions from immunofluorescence images.

Bao, LX ; Luo, ZM ; et al.
In: Medical & biological engineering & computing, Jg. 62 (2024-04-01), Heft 4, S. 1105-1119
Online academicJournal

Titel:
Automated identification of protein expression intensity and classification of protein cellular locations in mouse brain regions from immunofluorescence images.
Autor/in / Beteiligte Person: Bao, LX ; Luo, ZM ; Zhu, XL ; Xu, YY
Link:
Zeitschrift: Medical & biological engineering & computing, Jg. 62 (2024-04-01), Heft 4, S. 1105-1119
Veröffentlichung: New York, NY : Springer ; <i>Original Publication</i>: Stevenage, Eng., Peregrinus., 2024
Medientyp: academicJournal
ISSN: 1741-0444 (electronic)
DOI: 10.1007/s11517-023-02985-x
Schlagwort:
  • Animals
  • Mice
  • Fluorescent Antibody Technique
  • Image Processing, Computer-Assisted
  • Mammals
  • Brain
  • Machine Learning
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Med Biol Eng Comput] 2024 Apr; Vol. 62 (4), pp. 1105-1119. <i>Date of Electronic Publication: </i>2023 Dec 27.
  • MeSH Terms: Brain* ; Machine Learning* ; Animals ; Mice ; Fluorescent Antibody Technique ; Image Processing, Computer-Assisted ; Mammals
  • References: Ding J, Ji J, Rabow Z, Shen T, Folz J, Brydges CR et al (2021) A metabolome atlas of the aging mouse brain. Nat Commun 12(1):6021. https://doi.org/10.1038/s41467-021-26310-y. (PMID: 10.1038/s41467-021-26310-y346548188519999) ; Duan L, Liu J, Yin H, Wang W, Liu L, Shen J et al (2022) Dynamic changes in spatiotemporal transcriptome reveal maternal immune dysregulation of autism spectrum disorder. Comput Biol Med 151:106334. https://doi.org/10.1016/j.compbiomed.2022.106334. (PMID: 10.1016/j.compbiomed.2022.10633436442276) ; Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C et al (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367(6482):eaay5947. https://doi.org/10.1126/science.aay5947. (PMID: 10.1126/science.aay594732139519) ; Zellner A, Müller SA, Lindner B, Beaufort N, Rozemuller AJ, Arzberger T et al (2022) Proteomic profiling in cerebral amyloid angiopathy reveals an overlap with CADASIL highlighting accumulation of HTRA1 and its substrates. Acta Neuropathol Commun 10(1):1–15. (PMID: 10.1186/s40478-021-01303-6) ; Ferreira M, Ventorim R, Almeida E, Silveira S, Silveira W (2021) Protein abundance prediction through machine learning methods. J Mol Biol 433(22):167267. (PMID: 10.1016/j.jmb.2021.16726734563548) ; Wang F, Wei L (2022) Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images. Bioinformatics 38(9):2602–2611. (PMID: 10.1093/bioinformatics/btac12335212728) ; Cong H, Liu H, Chen Y, Cao Y (2020) Self-evoluting framework of deep convolutional neural network for multilocus protein subcellular localization. Med Biol Eng Compu 58:3017–3038. (PMID: 10.1007/s11517-020-02275-w) ; Xue Z-Z, Li C, Luo Z-M, Wang S-S, Xu Y-Y (2022) Automated classification of protein expression levels in immunohistochemistry images to improve the detection of cancer biomarkers. BMC Bioinformatics 23(1):470. https://doi.org/10.1186/s12859-022-05015-z. (PMID: 10.1186/s12859-022-05015-z363482999644510) ; Ouyang W, Winsnes CF, Hjelmare M, Cesnik AJ, Åkesson L, Xu H et al (2019) Analysis of the human protein atlas image classification competition. Nat Methods 16(12):1254–1261. https://doi.org/10.1038/s41592-019-0658-6. (PMID: 10.1038/s41592-019-0658-6317808406976526) ; Wang G, Xue M-Q, Shen H-B, Xu Y-Y (2022) Learning protein subcellular localization multi-view patterns from heterogeneous data of imaging, sequence and networks. Briefings in Bioinformatics 23(2):bbab539. https://doi.org/10.1093/bib/bbab539. (PMID: 10.1093/bib/bbab53935018423) ; Xue M-Q, Zhu X-L, Wang G, Xu Y-Y (2022) DULoc: quantitatively unmixing protein subcellular location patterns in immunofluorescence images based on deep learning features. Bioinformatics 38(3):827–833. https://doi.org/10.1093/bioinformatics/btab730. (PMID: 10.1093/bioinformatics/btab73034694372) ; Giacopelli G, Migliore M, Tegolo D (2023) NeuronAlg: an innovative neuronal computational model for immunofluorescence image segmentation. Sensors 23(10):4598. https://doi.org/10.3390/s23104598. (PMID: 10.3390/s231045983743050910223721) ; Goubran M, Leuze C, Hsueh B, Aswendt M, Ye L, Tian Q et al (2019) Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nat Commun 10(1):5504. https://doi.org/10.1038/s41467-019-13374-0. (PMID: 10.1038/s41467-019-13374-0317967416890789) ; Li Y, Zhang Q, Zhou H, Li J, Li X, Li A (2023) Cerebrovascular segmentation from mesoscopic optical images using Swin Transformer. J Innov Opt Health Sci 2350009. https://doi.org/10.1142/S1793545823500098. ; Digre A, Lindskog C (2021) The human protein atlas—spatial localization of the human proteome in health and disease. Protein Sci 30(1):218–233. (PMID: 10.1002/pro.398733146890) ; Tyson AL, Margrie TW (2022) Mesoscale microscopy and image analysis tools for understanding the brain. Prog Biophys Mol Biol 168:81–93. https://doi.org/10.1016/j.pbiomolbio.2021.06.013. (PMID: 10.1016/j.pbiomolbio.2021.06.013342166398786668) ; Agarwal N, Xu X, Gopi M (2018) Geometry processing of conventionally produced mouse brain slice images. J Neurosci Methods 306:45–56. https://doi.org/10.1016/j.jneumeth.2018.04.008. (PMID: 10.1016/j.jneumeth.2018.04.008296892836086593) ; Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36. https://doi.org/10.1016/S1361-8415(01)80026-8. (PMID: 10.1016/S1361-8415(01)80026-810638851) ; Ni H, Tan C, Feng Z, Chen S, Zhang Z, Li W et al (2020) A robust image registration interface for large volume brain atlas. Sci Rep 10(1):2139. https://doi.org/10.1038/s41598-020-59042-y. (PMID: 10.1038/s41598-020-59042-y320342197005806) ; Hirai R, Mori S, Suyari H, Tsuji H, Ishikawa H (2023) Optimizing 3DCT image registration for interfractional changes in carbon-ion prostate radiotherapy. Sci Rep 13(1):7448. https://doi.org/10.1038/s41598-023-34339-w. (PMID: 10.1038/s41598-023-34339-w3715690110167266) ; Chen Z, Zheng Y, Gee JC (2023) TransMatch: a transformer-based multilevel dual-stream feature matching network for unsupervised deformable image registration. IEEE Trans Med Imaging 1–1. https://doi.org/10.1109/TMI.2023.3288136. ; Toki MI, Cecchi F, Hembrough T, Syrigos KN, Rimm DL (2017) Proof of the quantitative potential of immunofluorescence by mass spectrometry. Lab Invest 97(3):329–334. (PMID: 10.1038/labinvest.2016.148280923645334147) ; Pécot T, Cuitiño MC, Johnson RH, Timmers C, Leone G (2022) Deep learning tools and modeling to estimate the temporal expression of cell cycle proteins from 2D still images. PLoS Comput Biol 18(3):e1009949. (PMID: 10.1371/journal.pcbi.1009949352863008947602) ; De León Rodríguez SG, Hernández Herrera P, Aguilar Flores C, Pérez Koldenkova V, Guerrero A, Mantilla A et al (2022) A machine learning workflow of multiplexed immunofluorescence images to interrogate activator and tolerogenic profiles of conventional type 1 dendritic cells infiltrating melanomas of disease-free and metastatic patients. J Oncol 2022:9775736. (PMID: 10.1155/2022/9775736362762719581597) ; Fang K, Li C, Wang J (2023) An automatic immunofluorescence pattern classification framework for HEp-2 image based on supervised learning. Brief Bioinform 24(3):bbad144. https://doi.org/10.1093/bib/bbad144. (PMID: 10.1093/bib/bbad14437088980) ; Yang Y, Tu Y, Lei H, Long W (2023) HAMIL: hierarchical aggregation-based multi-instance learning for microscopy image classification. Pattern Recogn 136:109245. https://doi.org/10.1016/j.patcog.2022.109245. (PMID: 10.1016/j.patcog.2022.109245) ; Abdi IY, Bartl M, Dakna M, Abdesselem H, Majbour N, Trenkwalder C et al (2023) Cross-sectional proteomic expression in Parkinson’s disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up. Neurobiol Dis 177:105997. https://doi.org/10.1016/j.nbd.2023.105997. (PMID: 10.1016/j.nbd.2023.10599736634823) ; Uras I, Karayel-Basar M, Sahin B, Baykal AT (2023) Detection of early proteomic alterations in 5xFAD Alzheimer’s disease neonatal mouse model via MALDI-MSI. Alzheimers Dement 19(10):4572–4589. ; Taguchi K, Watanabe Y, Tsujimura A, Tanaka M (2019) Expression of alpha-synuclein is regulated in a neuronal cell type-dependent manner. Anat Sci Int 94(1):11–22. https://doi.org/10.1007/s12565-018-0464-8. (PMID: 10.1007/s12565-018-0464-830362073) ; Zahid S, Oellerich M, Asif AR, Ahmed N (2014) Differential expression of proteins in brain regions of Alzheimer’s Disease Patients. Neurochem Res 39(1):208–215. https://doi.org/10.1007/s11064-013-1210-1. (PMID: 10.1007/s11064-013-1210-124306222) ; Feng Y, Zhang L, Mo J (2020) Deep manifold preserving autoencoder for classifying breast cancer histopathological images. IEEE/ACM Trans Comput Biol Bioinform 17(1):91–101. https://doi.org/10.1109/TCBB.2018.2858763. (PMID: 10.1109/TCBB.2018.285876330040652) ; Karim MR, Beyan O, Zappa A, Costa IG, Rebholz-Schuhmann D, Cochez M et al (2021) Deep learning-based clustering approaches for bioinformatics. Brief Bioinform 22(1):393–415. https://doi.org/10.1093/bib/bbz170. (PMID: 10.1093/bib/bbz17032008043) ; Wang C-W, Ka S-M, Chen A (2014) Robust image registration of biological microscopic images. Sci Rep 4(1):1–12. ; Agarwal N, Xu X, Gopi M (2016) Robust registration of mouse brain slices with severe histological artifacts. Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing p. 1–8. ; Kindle LM, Kakadiaris IA, Ju T, Carson JP (2011) A semiautomated approach for artefact removal in serial tissue cryosections. J Microsc 241(2):200–206. (PMID: 10.1111/j.1365-2818.2010.03424.x21118219) ; Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. https://doi.org/10.1109/34.121791. (PMID: 10.1109/34.121791) ; Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N et al (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18(12):1819–1831. (PMID: 10.1038/nn.4160265236467116867) ; Wang D, Khosla A, Gargeya R, Irshad H, Beck AH (2016) Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:160605718. ; Frade J, Pereira T, Morgado J, Silva F, Freitas C, Mendes J et al (2022) Multiple instance learning for lung pathophysiological findings detection using CT scans. Med Biol Eng Compu 60(6):1569–1584. https://doi.org/10.1007/s11517-022-02526-y. (PMID: 10.1007/s11517-022-02526-y) ; Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556. ; Hou L, Samaras D, Kurc TM, Gao Y, Davis JE, Saltz JH (2016) Patch-based convolutional neural network for whole slide tissue image classification. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p. 2424–2433. ; Wang X, Chen H, Gan C, Lin H, Dou Q, Tsougenis E et al (2020) Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans Cybern 50(9):3950–3962. https://doi.org/10.1109/TCYB.2019.2935141. (PMID: 10.1109/TCYB.2019.293514131484154) ; Ilse M, Tomczak J, Welling M (2018) Attention-based deep multiple instance learning. International conference on machine learning: PMLR p. 2127–2136. ; Su Z, Tavolara TE, Carreno-Galeano G, Lee SJ, Gurcan MN, Niazi MKK (2022) Attention2majority: weak multiple instance learning for regenerative kidney grading on whole slide images. Med Image Anal 79:102462. https://doi.org/10.1016/j.media.2022.102462. (PMID: 10.1016/j.media.2022.1024623551253210382794) ; Yao J, Zhu X, Jonnagaddala J, Hawkins N, Huang J (2020) Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med Image Anal 65:101789. https://doi.org/10.1016/j.media.2020.101789. (PMID: 10.1016/j.media.2020.10178932739769) ; Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. 2017 IEEE International Conference on Computer Vision (ICCV) p. 2999–3007. ; He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p. 770–778. ; Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017) Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p. 2261–2269. ; Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. International conference on machine learning: PMLR p. 6105–6114. ; Sharma H, Zerbe N, Klempert I, Hellwich O, Hufnagl P (2017) Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Comput Med Imaging Graph 61:2–13. (PMID: 10.1016/j.compmedimag.2017.06.00128676295) ; Xu Y-Y, Yang F, Zhang Y, Shen H-B (2015) Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning. Bioinformatics 31(7):1111–1119. (PMID: 10.1093/bioinformatics/btu77225414362) ; Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004. https://doi.org/10.1109/TMI.2003.815867. (PMID: 10.1109/TMI.2003.81586712906253) ; Krstinic D, Braović M, Šerić L, Božić-Štulić D (2020) Multi-label classifier performance evaluation with confusion matrix. Comput Sci Inform Technol 10:1. ; Zhu X-L, Bao L-X, Xue M-Q, Xu Y-Y (2023) Automatic recognition of protein subcellular location patterns in single cells from immunofluorescence images based on deep learning. Brief Bioinform 24(1):bbac609. https://doi.org/10.1093/bib/bbac609. (PMID: 10.1093/bib/bbac60936577448) ; Stadler C, Rexhepaj E, Singan VR, Murphy RF, Pepperkok R, Uhlén M et al (2013) Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods 10(4):315–323. https://doi.org/10.1038/nmeth.2377. (PMID: 10.1038/nmeth.237723435261) ; Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H et al (2017) A subcellular map of the human proteome. Science 356(6340):eaal3321. (PMID: 10.1126/science.aal332128495876) ; Tu Y, Lei H, Shen H-B, Yang Y (2022) SIFLoc: a self-supervised pre-training method for enhancing the recognition of protein subcellular localization in immunofluorescence microscopic images. Briefings in Bioinformatics 23(2):bbab605. https://doi.org/10.1093/bib/bbab605. (PMID: 10.1093/bib/bbab60535152293) ; Long W, Yang Y, Shen H-B (2020) ImPLoc: a multi-instance deep learning model for the prediction of protein subcellular localization based on immunohistochemistry images. Bioinformatics 36(7):2244–2250. https://doi.org/10.1093/bioinformatics/btz909. (PMID: 10.1093/bioinformatics/btz90931804670) ; Nanni L, Paci M, Brahnam S, Lumini A (2022) Feature transforms for image data augmentation. Neural Comput Appl 34(24):22345–22356. https://doi.org/10.1007/s00521-022-07645-z. (PMID: 10.1007/s00521-022-07645-z) ; Nanni L, Paci M, Brahnam S, Lumini A (2021) Comparison of different image data augmentation approaches. J Imaging 7(12):254. (PMID: 10.3390/jimaging7120254349407218707550)
  • Grant Information: 2022A1515011436 Natural Science Foundation of Guangdong Province; 202102021087 Guangzhou Municipal Science and Technology Project
  • Contributed Indexing: Keywords: Bioimage informatics; Cellular location; Immunofluorescence image; Mouse brain; Protein expression
  • Entry Date(s): Date Created: 20231227 Date Completed: 20240320 Latest Revision: 20240320
  • Update Code: 20240320

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -