Zum Hauptinhalt springen

Cardiovascular autonomic dysfunction in post-COVID-19 syndrome: a major health-care burden.

Fedorowski, A ; Fanciulli, A ; et al.
In: Nature reviews. Cardiology, Jg. 21 (2024-06-01), Heft 6, S. 379-395
academicJournal

Titel:
Cardiovascular autonomic dysfunction in post-COVID-19 syndrome: a major health-care burden.
Autor/in / Beteiligte Person: Fedorowski, A ; Fanciulli, A ; Raj, SR ; Sheldon, R ; Shibao, CA ; Sutton, R
Zeitschrift: Nature reviews. Cardiology, Jg. 21 (2024-06-01), Heft 6, S. 379-395
Veröffentlichung: London : Nature Pub. Group, 2024
Medientyp: academicJournal
ISSN: 1759-5010 (electronic)
DOI: 10.1038/s41569-023-00962-3
Schlagwort:
  • Humans
  • Post-Acute COVID-19 Syndrome
  • SARS-CoV-2
  • COVID-19 complications
  • COVID-19 physiopathology
  • COVID-19 epidemiology
  • Autonomic Nervous System Diseases physiopathology
  • Autonomic Nervous System Diseases etiology
  • Autonomic Nervous System Diseases diagnosis
  • Cardiovascular Diseases physiopathology
  • Cardiovascular Diseases epidemiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
  • Language: English
  • [Nat Rev Cardiol] 2024 Jun; Vol. 21 (6), pp. 379-395. <i>Date of Electronic Publication: </i>2024 Jan 02.
  • MeSH Terms: COVID-19* / complications ; COVID-19* / physiopathology ; COVID-19* / epidemiology ; Autonomic Nervous System Diseases* / physiopathology ; Autonomic Nervous System Diseases* / etiology ; Autonomic Nervous System Diseases* / diagnosis ; Cardiovascular Diseases* / physiopathology ; Cardiovascular Diseases* / epidemiology ; Humans ; Post-Acute COVID-19 Syndrome ; SARS-CoV-2
  • Comments: Comment in: Nat Rev Cardiol. 2024 Jun;21(6):432. (PMID: 38279048)
  • References: Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023). (PMID: 36639608983920110.1038/s41579-022-00846-2) ; Soriano, J. B. et al. A clinical case definition of post COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107 (2022). (PMID: 3495195310.1016/S1473-3099(21)00703-9) ; Gyongyosi, M. et al. Long COVID and the cardiovascular system – elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc. Res. 119, 336–356 (2023). (PMID: 3587588310.1093/cvr/cvac115) ; Xie, Y., Choi, T. & Al-Aly, Z. Association of treatment with nirmatrelvir and the risk of post-COVID-19 condition. JAMA Intern. Med. 183, 554–564 (2023). (PMID: 369518291003720010.1001/jamainternmed.2023.0743) ; Raman, B., Bluemke, D. A., Luscher, T. F. & Neubauer, S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 43, 1157–1172 (2022). (PMID: 35176758890339310.1093/eurheartj/ehac031) ; Rathmann, W., Kuss, O. & Kostev, K. Incidence of newly diagnosed diabetes after Covid-19. Diabetologia 65, 949–954 (2022). (PMID: 35292829892374310.1007/s00125-022-05670-0) ; Kwan, A. C. et al. Association of COVID-19 vaccination with risk for incident diabetes after COVID-19 infection. JAMA Netw. Open. 6, e2255965 (2023). (PMID: 36787145992969010.1001/jamanetworkopen.2022.55965) ; Spallone, V. et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab. Res. Rev. 27, 639–653 (2011). (PMID: 2169576810.1002/dmrr.1239) ; Choutka, J., Jansari, V., Hornig, M. & Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 28, 911–923 (2022). (PMID: 3558519610.1038/s41591-022-01810-6) ; Honigsbaum, M. & Krishnan, L. Taking pandemic sequelae seriously: from the Russian influenza to COVID-19 long-haulers. Lancet 396, 1389–1391 (2020). (PMID: 33058777755016910.1016/S0140-6736(20)32134-6) ; Komaroff, A. L. & Lipkin, W. I. ME/CFS and long COVID share similar symptoms and biological abnormalities: road map to the literature. Front. Med. 10, 1187163 (2023). (PMID: 10.3389/fmed.2023.1187163) ; Vernino, S. et al. Postural orthostatic tachycardia syndrome (POTS): state of the science and clinical care from a 2019 National Institutes of Health Expert Consensus Meeting – Part 1. Auton. Neurosci. 235, 102828 (2021). (PMID: 34144933845542010.1016/j.autneu.2021.102828) ; Byambasuren, O., Stehlik, P., Clark, J., Alcorn, K. & Glasziou, P. Effect of covid-19 vaccination on long covid: systematic review. BMJ Med. 2, e000385 (2023). (PMID: 36936268997869210.1136/bmjmed-2022-000385) ; Richard, S. A. et al. Persistent COVID-19 symptoms at 6 months after onset and the role of vaccination before or after SARS-CoV-2 infection. JAMA Netw. Open. 6, e2251360 (2023). (PMID: 36652247985707710.1001/jamanetworkopen.2022.51360) ; Kwan, A. C. et al. Apparent risks of postural orthostatic tachycardia syndrome diagnoses after COVID-19 vaccination and SARS-Cov-2 infection. Nat. Cardiovasc. Res. 1, 1187–1194 (2022). (PMID: 373038271025490110.1038/s44161-022-00177-8) ; Eldokla, A. M. & Numan, M. T. Postural orthostatic tachycardia syndrome after mRNA COVID-19 vaccine. Clin. Auton. Res. 32, 307–311 (2022). (PMID: 35870086930803110.1007/s10286-022-00880-3) ; Reiner, M. F. et al. Case report of long-term postural tachycardia syndrome in a patient after messenger RNA coronavirus disease-19 vaccination with mRNA-1273. Eur. Heart J. Case Rep. 7, ytad390 (2023). (PMID: 376500751046459310.1093/ehjcr/ytad390) ; Blitshteyn, S. & Fedorowski, A. The risks of POTS after COVID-19 vaccination and SARS-CoV-2 infection: more studies are needed. Nat. Cardiovasc. Res. 1, 1119–1120 (2022). (PMID: 10.1038/s44161-022-00180-z) ; Mizrahi, B. et al. Long covid outcomes at one year after mild SARS-CoV-2 infection: nationwide cohort study. BMJ 380, e072529 (2023). (PMID: 3663115310.1136/bmj-2022-072529) ; Johansson, M. et al. Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the Swedish experience. JACC Case Rep. 3, 573–580 (2021). (PMID: 33723532794634410.1016/j.jaccas.2021.01.009) ; Stahlberg, M. et al. Post-COVID-19 tachycardia syndrome: a distinct phenotype of post-acute COVID-19 syndrome. Am. J. Med. 134, 1451–1456 (2021). (PMID: 34390682835673010.1016/j.amjmed.2021.07.004) ; Ormiston, C. K., Swiatkiewicz, I. & Taub, P. R. Postural orthostatic tachycardia syndrome as a sequela of COVID-19. Heart Rhythm. 19, 1880–1889 (2022). (PMID: 35853576928758710.1016/j.hrthm.2022.07.014) ; Aranyo, J. et al. Inappropriate sinus tachycardia in post-COVID-19 syndrome. Sci. Rep. 12, 298 (2022). (PMID: 34996973874189610.1038/s41598-021-03831-6) ; Schondorf, R. & Low, P. A. Idiopathic postural orthostatic tachycardia syndrome: an attenuated form of acute pandysautonomia? Neurology 43, 132–137 (1993). (PMID: 842387710.1212/WNL.43.1_Part_1.132) ; Fedorowski, A. Postural orthostatic tachycardia syndrome: clinical presentation, aetiology and management. J. Intern. Med. 285, 352–366 (2019). (PMID: 3037256510.1111/joim.12852) ; Olshansky, B. & Sullivan, R. M. Inappropriate sinus tachycardia. Europace 21, 194–207 (2019). (PMID: 2993124410.1093/europace/euy128) ; Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018). (PMID: 3016551610.1093/eurheartj/ehy339) ; Brignole, M. et al. 2018 ESC guidelines for the diagnosis and management of syncope. Eur. Heart J. 39, 1883–1948 (2018). (PMID: 2956230410.1093/eurheartj/ehy037) ; Freeman, R. et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Auton. Neurosci. 161, 46–48 (2011). (PMID: 2139307010.1016/j.autneu.2011.02.004) ; Fedorowski, A. et al. Orthostatic hypotension: management of a complex, but common, medical problem. Circ. Arrhythm. Electrophysiol. 15, e010573 (2022). (PMID: 35212554904990210.1161/CIRCEP.121.010573) ; van Wijnen, V. K. et al. Initial orthostatic hypotension in teenagers and young adults. Clin. Auton. Res. 26, 441–449 (2016). (PMID: 27637670510479510.1007/s10286-016-0382-6) ; Jordan, J. et al. Consensus statement on the definition of orthostatic hypertension endorsed by the American Autonomic Society and the Japanese Society of Hypertension. Hypertens. Res. 46, 291–294 (2023). (PMID: 3641852910.1038/s41440-022-01074-0) ; Parati, G. & Schumacher, H. Blood pressure variability over 24 h: prognostic implications and treatment perspectives. An assessment using the smoothness index with telmisartan-amlodipine monotherapy and combination. Hypertens. Res. 37, 187–193 (2014). (PMID: 2430551810.1038/hr.2013.145) ; Lodhi, H. A. et al. Usefulness of blood pressure variability indices derived from 24-hour ambulatory blood pressure monitoring in detecting autonomic failure. J. Am. Heart Assoc. 8, e010161 (2019). (PMID: 30905258650973810.1161/JAHA.118.010161) ; Owens, P. E., Lyons, S. P. & O’Brien, E. T. Arterial hypotension: prevalence of low blood pressure in the general population using ambulatory blood pressure monitoring. J. Hum. Hypertens. 14, 243–247 (2000). (PMID: 1080504910.1038/sj.jhh.1000973) ; Brignole, M. et al. Tests for the identification of reflex syncope mechanism. Expert. Rev. Med. Devices 20, 109–119 (2023). (PMID: 3681410210.1080/17434440.2023.2174428) ; Rivasi, G. et al. Association between hypotension during 24 h ambulatory blood pressure monitoring and reflex syncope: the SynABPM 1 study. Eur. Heart J. 43, 3765–3776 (2022). (PMID: 35766175955309710.1093/eurheartj/ehac347) ; Sharad, B. et al. Twenty-four-hour ambulatory blood pressure profile in patients with reflex syncope and matched controls. J. Am. Heart Assoc. 12, e028704 (2023). (PMID: 370265531022724410.1161/JAHA.122.028704) ; Brubaker, P. H. & Kitzman, D. W. Chronotropic incompetence: causes, consequences, and management. Circulation 123, 1010–1020 (2011). (PMID: 21382903306529110.1161/CIRCULATIONAHA.110.940577) ; Kadish, A. H. et al. ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography: a report of the ACC/AHA/ACP-ASIM task force on clinical competence (ACC/AHA Committee to develop a clinical competence statement on electrocardiography and ambulatory electrocardiography) endorsed by the International Society for Holter and noninvasive electrocardiology. Circulation 104, 3169–3178 (2001). (PMID: 1174811910.1161/circ.104.25.3169) ; Feigofsky, S. & Fedorowski, A. Defining cardiac dysautonomia – different types, overlap syndromes; case-based presentations. J. Atr. Fibrillation 13, 2403 (2020). (PMID: 33024503753313110.4022/jafib.2403) ; Reis Carneiro, D. et al. Clinical presentation and management strategies of cardiovascular autonomic dysfunction following a COVID-19 infection – a systematic review. Eur. J. Neurol. 30, 1528–1539 (2023). (PMID: 3669438210.1111/ene.15714) ; Fedorowski, A. & Sutton, R. Autonomic dysfunction and postural orthostatic tachycardia syndrome in post-acute COVID-19 syndrome. Nat. Rev. Cardiol. 20, 281–282 (2023). (PMID: 36732397989396410.1038/s41569-023-00842-w) ; Stahlberg, M. & Fedorowski, A. Cardiovascular autonomic abnormalities in patients with post-acute sequelae of COVID-19: don’t miss that target! Can. J. Cardiol. 39, 776–778 (2023). (PMID: 3658648110.1016/j.cjca.2022.12.021) ; Goldstein, D. S., Robertson, D., Esler, M., Straus, S. E. & Eisenhofer, G. Dysautonomias: clinical disorders of the autonomic nervous system. Ann. Intern. Med. 137, 753–763 (2002). (PMID: 1241694910.7326/0003-4819-137-9-200211050-00011) ; Hall, J. E. & Hall, M. E. Guyton and Hall Textbook of Medical Physiology 14th edn Ch. XVIII, 204–215 (Elsevier, 2020). ; Biaggoni, I. et al. Primer on the Autonomic Nervous System 4th edn (Academic Press, 2023). ; Cannon, W. B. The Wisdom of the Body (W. W. Norton and Company, 1932). ; Kaufmann, H., Norcliffe-Kaufmann, L. & Palma, J. A. Baroreflex dysfunction. N. Engl. J. Med. 382, 163–178 (2020). (PMID: 3191424310.1056/NEJMra1509723) ; Ricci, F., De Caterina, R. & Fedorowski, A. Orthostatic hypotension: epidemiology, prognosis, and treatment. J. Am. Coll. Cardiol. 66, 848–860 (2015). (PMID: 2627106810.1016/j.jacc.2015.06.1084) ; Torabi, P. et al. Impact of cardiovascular neurohormones on onset of vasovagal syncope induced by head-up tilt. J. Am. Heart Assoc. 8, e012559 (2019). (PMID: 31208249664564210.1161/JAHA.119.012559) ; Mayuga, K. A. et al. Sinus tachycardia: a multidisciplinary expert focused review. Circ. Arrhythm. Electrophysiol. 15, e007960 (2022). (PMID: 36074973952359210.1161/CIRCEP.121.007960) ; Camici, P. G., d’Amati, G. & Rimoldi, O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat. Rev. Cardiol. 12, 48–62 (2015). (PMID: 2531122910.1038/nrcardio.2014.160) ; Young, A. et al. Impaired peripheral microvascular function and risk of major adverse cardiovascular events in patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 41, 1801–1809 (2021). (PMID: 33730873806230810.1161/ATVBAHA.121.316083) ; Berry, C. et al. Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J. Am. Heart Assoc. 8, e011104 (2019). (PMID: 30712442640558010.1161/JAHA.118.011104) ; Taqueti, V. R. & Di Carli, M. F. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2625–2641 (2018). (PMID: 30466521629677910.1016/j.jacc.2018.09.042) ; Masi, S. et al. Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. Eur. Heart J. 42, 2590–2604 (2021). (PMID: 3325797310.1093/eurheartj/ehaa857) ; Alexander, Y. et al. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 117, 29–42 (2021). (PMID: 3228291410.1093/cvr/cvaa085) ; Cutolo, M. & Smith, V. Detection of microvascular changes in systemic sclerosis and other rheumatic diseases. Nat. Rev. Rheumatol. 17, 665–677 (2021). (PMID: 3456165210.1038/s41584-021-00685-0) ; Ong, P. et al. International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 250, 16–20 (2018). (PMID: 2903199010.1016/j.ijcard.2017.08.068) ; Brignole, M. et al. Pacemaker therapy in patients with neurally mediated syncope and documented asystole: third International Study on Syncope of Uncertain Etiology (ISSUE-3): a randomized trial. Circulation 125, 2566–2571 (2012). (PMID: 2256593610.1161/CIRCULATIONAHA.111.082313) ; Sheldon, R. et al. Midodrine for the prevention of vasovagal syncope: a randomized clinical trial. Ann. Intern. Med. 174, 1349–1356 (2021). (PMID: 3433923110.7326/M20-5415) ; Brignole, M. et al. Low-blood pressure phenotype underpins the tendency to reflex syncope. J. Hypertens. 39, 1319–1325 (2021). (PMID: 33560050818348610.1097/HJH.0000000000002800) ; Fanciulli, A. et al. Impact of the COVID-19 pandemic on clinical autonomic practice in Europe: a survey of the European Academy of Neurology and the European Federation of Autonomic Societies. Eur. J. Neurol. 30, 1712–1726 (2023). (PMID: 10.1111/ene.15787) ; Hira, R. et al. Objective hemodynamic cardiovascular autonomic abnormalities in post-acute sequelae of COVID-19. Can. J. Cardiol. 39, 767–775 (2023). (PMID: 3650917810.1016/j.cjca.2022.12.002) ; Jamal, S. M. et al. Prospective evaluation of autonomic dysfunction in post-acute sequela of COVID-19. J. Am. Coll. Cardiol. 79, 2325–2330 (2022). (PMID: 35381331897626110.1016/j.jacc.2022.03.357) ; Shouman, K. et al. Autonomic dysfunction following COVID-19 infection: an early experience. Clin. Auton. Res. 31, 385–394 (2021). (PMID: 33860871805022710.1007/s10286-021-00803-8) ; Mouram, S. et al. Incidence and predictors of cardiac arrhythmias in patients with COVID-19. Front. Cardiovasc. Med. 9, 908177 (2022). (PMID: 35811696925700910.3389/fcvm.2022.908177) ; Bailey, J. et al. Multidisciplinary center care for long covid syndrome – a retrospective cohort study. Am. J. Med. https://doi.org/10.1016/j.amjmed.2023.05.002 (2023). (PMID: 10.1016/j.amjmed.2023.05.0023739111610307671) ; Rivasi, G., Rafanelli, M., Mossello, E., Brignole, M. & Ungar, A. Drug-related orthostatic hypotension: beyond anti-hypertensive medications. Drugs Aging 37, 725–738 (2020). (PMID: 32894454752481110.1007/s40266-020-00796-5) ; Ricci, F. et al. Cardiovascular morbidity and mortality related to orthostatic hypotension: a meta-analysis of prospective observational studies. Eur. Heart J. 36, 1609–1617 (2015). (PMID: 2585221610.1093/eurheartj/ehv093) ; Elkholey, K. et al. Post-COVID-19 afferent baroreflex failure. Hypertension 80, 895–900 (2023). (PMID: 3680291410.1161/HYPERTENSIONAHA.123.20316) ; Durstenfeld, M. S. et al. Reduced exercise capacity, chronotropic incompetence, and early systemic inflammation in cardiopulmonary phenotype long COVID. J. Infect. Dis. 228, 542–554 (2023). (PMID: 371660761068669910.1093/infdis/jiad131) ; Jimeno-Almazan, A., Pallares, J. G., Buendia-Romero, A., Martinez-Cava, A. & Courel-Ibanez, J. Chronotropic incompetence in non-hospitalized patients with post-COVID-19 syndrome. J. Clin. Med. 10, 5434 (2021). (PMID: 34830716861799210.3390/jcm10225434) ; Thaweethai, T. et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA 329, 1934–1946 (2023). (PMID: 372789941021417910.1001/jama.2023.8823) ; Marshall, M. Long COVID: answers emerge on how many people get better. Nature 619, 20 (2023). (PMID: 3736979110.1038/d41586-023-02121-7) ; Brignole, M. et al. Practical instructions for the 2018 ESC guidelines for the diagnosis and management of syncope. Eur. Heart J. 39, e43–e80 (2018). (PMID: 2956229110.1093/eurheartj/ehy071) ; Ganzeboom, K. S. et al. Lifetime cumulative incidence of syncope in the general population: a study of 549 Dutch subjects aged 35-60 years. J. Cardiovasc. Electrophysiol. 17, 1172–1176 (2006). (PMID: 1707400610.1111/j.1540-8167.2006.00595.x) ; Soteriades, E. S. et al. Incidence and prognosis of syncope. N. Engl. J. Med. 347, 878–885 (2002). (PMID: 1223925610.1056/NEJMoa012407) ; Chou, S. H. et al. Global incidence of neurological manifestations among patients hospitalized with COVID-19 – a report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw. Open. 4, e2112131 (2021). (PMID: 33974053811414310.1001/jamanetworkopen.2021.12131) ; Oikonomou, E. et al. Endothelial dysfunction in acute and long standing COVID-19: a prospective cohort study. Vasc. Pharmacol. 144, 106975 (2022). (PMID: 10.1016/j.vph.2022.106975) ; Mahdi, A. et al. Microvascular dysfunction and reduced cardiac stress reactivity in postural orthostatic tachycardia associated with postacute COVID-19. Circ. Arrhythm. Electrophysiol. 16, 413–414 (2023). (PMID: 3733470210.1161/CIRCEP.123.011881) ; Iftekhar, N. & Sivan, M. Venous insufficiency and acrocyanosis in long COVID: dysautonomia. Lancet 402, e9 (2023). (PMID: 3757307810.1016/S0140-6736(23)01461-7) ; Olshansky, B. et al. Postural orthostatic tachycardia syndrome (POTS): a critical assessment. Prog. Cardiovasc. Dis. 63, 263–270 (2020). (PMID: 32222376901247410.1016/j.pcad.2020.03.010) ; Fedorowski, A. et al. Antiadrenergic autoimmunity in postural tachycardia syndrome. Europace 19, 1211–1219 (2017). (PMID: 2770285210.1093/europace/euw154) ; Yu, X. et al. Angiotensin II type 1 receptor autoantibodies in postural tachycardia syndrome. J. Am. Heart Assoc. 7, e008351 (2018). (PMID: 29618472601543510.1161/JAHA.117.008351) ; Kharraziha, I. et al. Serum activity against G protein-coupled receptors and severity of orthostatic symptoms in postural orthostatic tachycardia syndrome. J. Am. Heart Assoc. 9, e015989 (2020). (PMID: 32750291779226310.1161/JAHA.120.015989) ; Hall, J. et al. Detection of G protein-coupled receptor autoantibodies in postural orthostatic tachycardia syndrome using standard methodology. Circulation 146, 613–622 (2022). (PMID: 35766055939023410.1161/CIRCULATIONAHA.122.059971) ; Fedorowski, A. et al. Cardiorespiratory dysautonomia in post-COVID-19 condition: manifestations, mechanisms and management. J. Intern. Med. 294, 548–562 (2023). (PMID: 3718318610.1111/joim.13652) ; El-Rhermoul, F. Z. et al. Autoimmunity in Long Covid and POTS. Oxf. Open. Immunol. 4, iqad002 (2023). (PMID: 372559281022480610.1093/oxfimm/iqad002) ; Asarcikli, L. D. et al. Heart rate variability and cardiac autonomic functions in post-COVID period. J. Interv. Card. Electrophysiol. 63, 715–721 (2022). (PMID: 35106678880613410.1007/s10840-022-01138-8) ; Menezes Junior, A. D. S., Schroder, A. A., Botelho, S. M. & Resende, A. L. Cardiac autonomic function in long COVID-19 using heart rate variability: an observational cross-sectional study. J. Clin. Med. 12, 100 (2022). (PMID: 36614901982173610.3390/jcm12010100) ; Jacob, G. et al. Vagal and sympathetic function in neuropathic postural tachycardia syndrome. Hypertension 73, 1087–1096 (2019). (PMID: 3087935710.1161/HYPERTENSIONAHA.118.11803) ; Chu, H. et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe 1, e14–e23 (2020). (PMID: 32835326717382210.1016/S2666-5247(20)30004-5) ; Aghagoli, G. et al. Neurological involvement in COVID-19 and potential mechanisms: a review. Neurocrit Care 34, 1062–1071 (2021). (PMID: 3266179410.1007/s12028-020-01049-4) ; Franca, R. A., Ugga, L., Guadagno, E., Russo, D. & Del Basso De Caro, M. Neuroinvasive potential of SARS-CoV2 with neuroradiological and neuropathological findings: is the brain a target or a victim? APMIS 129, 37–54 (2021). (PMID: 3309814710.1111/apm.13092) ; Baig, A. M., Khaleeq, A., Ali, U. & Syeda, H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11, 995–998 (2020). (PMID: 3216774710.1021/acschemneuro.0c00122) ; Lukiw, W. J., Pogue, A. & Hill, J. M. SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol. Neurobiol. 42, 217–224 (2022). (PMID: 3284075810.1007/s10571-020-00947-7) ; Xu, Z. et al. Angiotensin II induces kidney inflammatory injury and fibrosis through binding to myeloid differentiation protein-2 (MD2). Sci. Rep. 7, 44911 (2017). (PMID: 28322341535963710.1038/srep44911) ; Pavlov, V. A. et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl Acad. Sci. USA 103, 5219–5223 (2006). (PMID: 16549778140562610.1073/pnas.0600506103) ; Schultheiss, C. et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep. Med. 3, 100663 (2022). (PMID: 35732153921472610.1016/j.xcrm.2022.100663) ; Gamboa, A. et al. Autonomic blockade reverses endothelial dysfunction in obesity-associated hypertension. Hypertension 68, 1004–1010 (2016). (PMID: 2752806710.1161/HYPERTENSIONAHA.116.07681) ; Chopoorian, A. H. et al. Impaired endothelial function in patients with postural tachycardia syndrome. Hypertension 77, 1001–1009 (2021). (PMID: 3348698310.1161/HYPERTENSIONAHA.120.16238) ; Mina, Y. et al. Deep phenotyping of neurologic postacute sequelae of SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm 10, e200097 (2023). (PMID: 371471361016270610.1212/NXI.0000000000200097) ; Oaklander, A. L. et al. Peripheral neuropathy evaluations of patients with prolonged long COVID. Neurol. Neuroimmunol. Neuroinflamm 9, e1146 (2022). (PMID: 35232750888989610.1212/NXI.0000000000001146) ; Pretorius, E. et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with long COVID/post-acute sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 21, 148 (2022). (PMID: 35933347935642610.1186/s12933-022-01579-5) ; Goldstein, D. S. The possible association between COVID-19 and postural tachycardia syndrome. Heart Rhythm. 18, 508–509 (2021). (PMID: 3331641410.1016/j.hrthm.2020.12.007) ; Goldstein, D. S. et al. Sympathoadrenal imbalance before neurocardiogenic syncope. Am. J. Cardiol. 91, 53–58 (2003). (PMID: 1250557110.1016/S0002-9149(02)02997-1) ; Novak, P. et al. Multisystem involvement in post-acute sequelae of coronavirus disease 19. Ann. Neurol. 91, 367–379 (2022). (PMID: 34952975901149510.1002/ana.26286) ; Goldstein, D. S. & Cheshire, W. P. Jr. The autonomic medical history. Clin. Auton. Res. 27, 223–233 (2017). (PMID: 28551871894213210.1007/s10286-017-0425-7) ; Blitshteyn, S. et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of autonomic dysfunction in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). P. M. R. 14, 1270–1291 (2022). (PMID: 10.1002/pmrj.12894) ; Sletten, D. M., Suarez, G. A., Low, P. A., Mandrekar, J. & Singer, W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin. Proc. 87, 1196–1201 (2012). (PMID: 23218087354192310.1016/j.mayocp.2012.10.013) ; Kaufmann, H., Malamut, R., Norcliffe-Kaufmann, L., Rosa, K. & Freeman, R. The Orthostatic Hypotension Questionnaire (OHQ): validation of a novel symptom assessment scale. Clin. Auton. Res. 22, 79–90 (2012). (PMID: 2204536310.1007/s10286-011-0146-2) ; Spahic, J. M. et al. Malmo POTS symptom score: assessing symptom burden in postural orthostatic tachycardia syndrome. J. Intern. Med. 293, 91–99 (2023). (PMID: 3611170010.1111/joim.13566) ; Beghi, E. et al. Comparative features and outcomes of major neurological complications of COVID-19. Eur. J. Neurol. 30, 413–433 (2023). (PMID: 3631448510.1111/ene.15617) ; Rass, V. et al. Neurological outcomes 1 year after COVID-19 diagnosis: a prospective longitudinal cohort study. Eur. J. Neurol. 29, 1685–1696 (2022). (PMID: 35239247911182310.1111/ene.15307) ; Hufner, K. et al. Persistent somatic symptoms are key to individual illness perception at one year after COVID-19 in a cross-sectional analysis of a prospective cohort study. J. Psychosom. Res. 169, 111234 (2023). (PMID: 369653961002246010.1016/j.jpsychores.2023.111234) ; Campese, N., Leys, F., Wenning, G. K. & Fanciulli, A. Bedside assessment of autonomic dysfunction in multiple system atrophy. J. Parkinsons Dis. 12, 2277–2281 (2022). (PMID: 3584803910.3233/JPD-223357) ; Mathias, C. J. et al. Postural tachycardia syndrome – current experience and concepts. Nat. Rev. Neurol. 8, 22–34 (2012). (PMID: 10.1038/nrneurol.2011.187) ; Terkelsen, A. J. et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol. 16, 934–944 (2017). (PMID: 2902984710.1016/S1474-4422(17)30329-0) ; Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 36, 1953–2041 (2018). (PMID: 3023475210.1097/HJH.0000000000001940) ; Fanciulli, A., Campese, N. & Wenning, G. K. The Schellong test: detecting orthostatic blood pressure and heart rate changes in German-speaking countries. Clin. Auton. Res. 29, 363–366 (2019). (PMID: 3127354910.1007/s10286-019-00619-7) ; Gibbons, C. H. et al. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J. Neurol. 264, 1567–1582 (2017). (PMID: 28050656553381610.1007/s00415-016-8375-x) ; Cooke, J. et al. Sitting and standing blood pressure measurements are not accurate for the diagnosis of orthostatic hypotension. QJM 102, 335–339 (2009). (PMID: 1927355210.1093/qjmed/hcp020) ; Shaw, B. H. et al. Optimal diagnostic thresholds for diagnosis of orthostatic hypotension with a ‘sit-to-stand test’. J. Hypertens. 35, 1019–1025 (2017). (PMID: 28129252554288410.1097/HJH.0000000000001265) ; Norcliffe-Kaufmann, L. et al. Orthostatic heart rate changes in patients with autonomic failure caused by neurodegenerative synucleinopathies. Ann. Neurol. 83, 522–531 (2018). (PMID: 29405350586725510.1002/ana.25170) ; Fanciulli, A. et al. Validation of the neurogenic orthostatic hypotension ratio with active standing. Ann. Neurol. 88, 643–645 (2020). (PMID: 3259681810.1002/ana.25834) ; Gibbons, C. H. & Freeman, R. Delayed orthostatic hypotension: a frequent cause of orthostatic intolerance. Neurology 67, 28–32 (2006). (PMID: 1683207310.1212/01.wnl.0000223828.28215.0b) ; Torabi, P., Ricci, F., Hamrefors, V., Sutton, R. & Fedorowski, A. Classical and delayed orthostatic hypotension in patients with unexplained syncope and severe orthostatic intolerance. Front. Cardiovasc. Med. 7, 21 (2020). (PMID: 32154270704658710.3389/fcvm.2020.00021) ; Fanciulli, A. et al. Consensus statement on the definition of neurogenic supine hypertension in cardiovascular autonomic failure by the American Autonomic Society (AAS) and the European Federation of Autonomic Societies (EFAS): endorsed by the European Academy of Neurology (EAN) and the European Society of Hypertension (ESH). Clin. Auton. Res. 28, 355–362 (2018). (PMID: 29766366609773010.1007/s10286-018-0529-8) ; Sutton, R. et al. Tilt testing remains a valuable asset. Eur. Heart J. 42, 1654–1660 (2021). (PMID: 33624801824514410.1093/eurheartj/ehab084) ; Russo, V. et al. Short-duration head-up tilt test potentiated with sublingual nitroglycerin in suspected vasovagal syncope: the fast Italian protocol. Eur. Heart J. 44, 2473–2479 (2023). (PMID: 3726467110.1093/eurheartj/ehad322) ; Fedorowski, A., Sheldon, R. & Sutton, R. Tilt testing evolves: faster and still accurate. Eur. Heart J. 44, 2480–2482 (2023). (PMID: 373178951034464510.1093/eurheartj/ehad359) ; Finucane, C. et al. A practical guide to active stand testing and analysis using continuous beat-to-beat non-invasive blood pressure monitoring. Clin. Auton. Res. 29, 427–441 (2019). (PMID: 3107693910.1007/s10286-019-00606-y) ; Finucane, C. et al. Age-related normative changes in phasic orthostatic blood pressure in a large population study: findings from The Irish Longitudinal Study on Ageing (TILDA). Circulation 130, 1780–1789 (2014). (PMID: 2527810110.1161/CIRCULATIONAHA.114.009831) ; Romero-Ortuno, R., Cogan, L., Foran, T., Kenny, R. A. & Fan, C. W. Continuous noninvasive orthostatic blood pressure measurements and their relationship with orthostatic intolerance, falls, and frailty in older people. J. Am. Geriat Soc. 59, 655–665 (2011). (PMID: 2143886810.1111/j.1532-5415.2011.03352.x) ; Fanciulli, A. et al. Association of transient orthostatic hypotension with falls and syncope in patients with Parkinson disease. Neurology 95, e2854–e2865 (2020). (PMID: 32938788773473410.1212/WNL.0000000000010749) ; Kawasaki, T. et al. Chronotropic incompetence and autonomic dysfunction in patients without structural heart disease. Europace 12, 561–566 (2010). (PMID: 2009768510.1093/europace/eup433) ; Sheldon, R. S. et al. 2015 Heart Rhythm Society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope. Heart Rhythm. 12, e41–e63 (2015). (PMID: 25980576526794810.1016/j.hrthm.2015.03.029) ; Carrington, M. et al. Clinical applications of heart rhythm monitoring tools in symptomatic patients and for screening in high-risk groups. Europace 24, 1721–1729 (2022). (PMID: 3598372910.1093/europace/euac088) ; Svennberg, E. et al. How to use digital devices to detect and manage arrhythmias: an EHRA practical guide. Europace 24, 979–1005 (2022). (PMID: 3536806510.1093/europace/euac038) ; Jordan, J. et al. Management of supine hypertension in patients with neurogenic orthostatic hypotension: scientific statement of the American Autonomic Society, European Federation of Autonomic Societies, and the European Society of Hypertension. J. Hypertens. 37, 1541–1546 (2019). (PMID: 3088260210.1097/HJH.0000000000002078) ; Lei, L. Y., Raj, S. R. & Sheldon, R. S. Midodrine for the prevention of vasovagal syncope: a systematic review and meta-analysis. Europace 24, 1171–1178 (2022). (PMID: 35025999930197910.1093/europace/euab323) ; Leys, F. & Fanciulli, A. The extended role of 24 h ambulatory blood pressure monitoring for reflex syncope. Eur. Heart J. 43, 3777–3780 (2022). (PMID: 3592430210.1093/eurheartj/ehac409) ; Rosenberry, R. & Nelson, M. D. Reactive hyperemia: a review of methods, mechanisms, and considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R605–R618 (2020). (PMID: 3202258010.1152/ajpregu.00339.2019) ; Thijssen, D. H. J. et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 40, 2534–2547 (2019). (PMID: 3121136110.1093/eurheartj/ehz350) ; Vincent, S. et al. Clinical assessment of norepinephrine transporter blockade through biochemical and pharmacological profiles. Circulation 109, 3202–3207 (2004). (PMID: 1518427810.1161/01.CIR.0000130847.18666.39) ; Schroeder, C. et al. Selective norepinephrine reuptake inhibition as a human model of orthostatic intolerance. Circulation 105, 347–353 (2002). (PMID: 1180499110.1161/hc0302.102597) ; Green, E. A. et al. Effects of norepinephrine reuptake inhibition on postural tachycardia syndrome. J. Am. Heart Assoc. 2, e000395 (2013). (PMID: 24002370383525110.1161/JAHA.113.000395) ; Masuki, S. et al. Reduced stroke volume during exercise in postural tachycardia syndrome. J. Appl. Physiol. 103, 1128–1135 (2007). (PMID: 1762683410.1152/japplphysiol.00175.2007) ; Bourne, K. M. et al. Compression garment reduces orthostatic tachycardia and symptoms in patients with postural orthostatic tachycardia syndrome. J. Am. Coll. Cardiol. 77, 285–296 (2021). (PMID: 3347865210.1016/j.jacc.2020.11.040) ; Raj, S. R. et al. Canadian Cardiovascular Society position statement on Postural Orthostatic Tachycardia Syndrome (POTS) and related disorders of chronic orthostatic intolerance. Can. J. Cardiol. 36, 357–372 (2020). (PMID: 3214586410.1016/j.cjca.2019.12.024) ; Raj, S. R., Fedorowski, A. & Sheldon, R. S. Diagnosis and management of postural orthostatic tachycardia syndrome. CMAJ 194, E378–E385 (2022). (PMID: 35288409892052610.1503/cmaj.211373) ; Garland, E. M. et al. Effect of high dietary sodium intake in patients with postural tachycardia syndrome. J. Am. Coll. Cardiol. 77, 2174–2184 (2021). (PMID: 33926653810382510.1016/j.jacc.2021.03.005) ; Fu, Q. et al. Cardiac origins of the postural orthostatic tachycardia syndrome. J. Am. Coll. Cardiol. 55, 2858–2868 (2010). (PMID: 20579544291431510.1016/j.jacc.2010.02.043) ; Shibata, S. et al. Short-term exercise training improves the cardiovascular response to exercise in the postural orthostatic tachycardia syndrome. J. Physiol. 590, 3495–3505 (2012). (PMID: 22641777354726510.1113/jphysiol.2012.233858) ; Raj, S. R. Row, row, row your way to treating postural tachycardia syndrome. Heart Rhythm. 13, 951–952 (2016). (PMID: 2673894510.1016/j.hrthm.2015.12.039) ; White, P. D. et al. Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial. Lancet 377, 823–836 (2011). (PMID: 21334061306563310.1016/S0140-6736(11)60096-2) ; Trahair, L. G., Horowitz, M. & Jones, K. L. Postprandial hypotension: a systematic review. J. Am. Med. Dir. Assoc. 15, 394–409 (2014). (PMID: 2463068610.1016/j.jamda.2014.01.011) ; Ruzieh, M., Dasa, O., Pacenta, A., Karabin, B. & Grubb, B. Droxidopa in the treatment of postural orthostatic tachycardia syndrome. Am. J. Ther. 24, e157–e161 (2017). (PMID: 2756380110.1097/MJT.0000000000000468) ; Jordan, J. et al. Water potentiates the pressor effect of ephedra alkaloids. Circulation 109, 1823–1825 (2004). (PMID: 1506694410.1161/01.CIR.0000126283.99195.37) ; Raj, S. R. et al. Propranolol decreases tachycardia and improves symptoms in the postural tachycardia syndrome: less is more. Circulation 120, 725–734 (2009). (PMID: 19687359275865010.1161/CIRCULATIONAHA.108.846501) ; Arnold, A. C. et al. Low-dose propranolol and exercise capacity in postural tachycardia syndrome: a randomized study. Neurology 80, 1927–1933 (2013). (PMID: 23616163371634210.1212/WNL.0b013e318293e310) ; Moon, J. et al. Efficacy of propranolol, bisoprolol, and pyridostigmine for postural tachycardia syndrome: a randomized clinical trial. Neurotherapeutics 15, 785–795 (2018). (PMID: 29500811609578410.1007/s13311-018-0612-9) ; Taub, P. R. et al. Randomized trial of ivabradine in patients with hyperadrenergic postural orthostatic tachycardia syndrome. J. Am. Coll. Cardiol. 77, 861–871 (2021). (PMID: 3360246810.1016/j.jacc.2020.12.029) ; Raj, S. R., Black, B. K., Biaggioni, I., Harris, P. A. & Robertson, D. Acetylcholinesterase inhibition improves tachycardia in postural tachycardia syndrome. Circulation 111, 2734–2740 (2005). (PMID: 1591170410.1161/CIRCULATIONAHA.104.497594) ; Kanjwal, K. et al. Pyridostigmine in the treatment of postural orthostatic tachycardia: a single-center experience. Pacing Clin. Electrophysiol. 34, 750–755 (2011). (PMID: 2141072210.1111/j.1540-8159.2011.03047.x) ; Sheldon, R. et al. Fludrocortisone for the prevention of vasovagal syncope: a randomized, placebo-controlled trial. J. Am. Coll. Cardiol. 68, 1–9 (2016). (PMID: 2736404310.1016/j.jacc.2016.04.030) ; Freitas, J. et al. Clinical improvement in patients with orthostatic intolerance after treatment with bisoprolol and fludrocortisone. Clin. Auton. Res. 10, 293–299 (2000). (PMID: 1119848510.1007/BF02281112) ; Coffin, S. T. et al. Desmopressin acutely decreases tachycardia and improves symptoms in the postural tachycardia syndrome. Heart Rhythm. 9, 1484–1490 (2012). (PMID: 22561596341934110.1016/j.hrthm.2012.05.002) ; Jacob, G. et al. Effects of volume loading and pressor agents in idiopathic orthostatic tachycardia. Circulation 96, 575–580 (1997). (PMID: 924422810.1161/01.CIR.96.2.575) ; Annamaria, M. et al. Treatment of inappropriate sinus tachycardia with ivabradine. J. Interv. Card. Electrophysiol. 46, 47–53 (2016). (PMID: 2646715110.1007/s10840-015-0066-5) ; Shabtaie, S. A., Witt, C. M. & Asirvatham, S. J. Efficacy of medical and ablation therapy for inappropriate sinus tachycardia: a single-center experience. J. Cardiovasc. Electrophysiol. 32, 1053–1061 (2021). (PMID: 3356644710.1111/jce.14942) ; Sheldon, R. et al. Prevention of Syncope Trial (POST): a randomized, placebo-controlled study of metoprolol in the prevention of vasovagal syncope. Circulation 113, 1164–1170 (2006). (PMID: 1650517810.1161/CIRCULATIONAHA.105.535161) ; Brignole, M., Sutton, R. & Fedorowski, A. Are convictions more dangerous enemies of truth than lies? Eur. Heart J. 42, 1711–1712 (2021). (PMID: 3373435510.1093/eurheartj/ehab164) ; Brignole, M. et al. Cardiac pacing in severe recurrent reflex syncope and tilt-induced asystole. Eur. Heart J. 42, 508–516 (2021). (PMID: 3327995510.1093/eurheartj/ehaa936) ; Baron-Esquivias, G. et al. Dual-chamber pacing with closed loop stimulation in recurrent reflex vasovagal syncope: the SPAIN study. J. Am. Coll. Cardiol. 70, 1720–1728 (2017). (PMID: 2895832810.1016/j.jacc.2017.08.026) ; Brignole, M. et al. Clinical controversy: methodology and indications of cardioneuroablation for reflex syncope. Europace 25, euad033 (2023). (PMID: 370213511022765410.1093/europace/euad033) ; Piotrowski, R., Baran, J., Sikorska, A., Krynski, T. & Kulakowski, P. Cardioneuroablation for reflex syncope: efficacy and effects on autonomic cardiac regulation – a prospective randomized trial. JACC Clin. Electrophysiol. 9, 85–95 (2023). (PMID: 3611413310.1016/j.jacep.2022.08.011) ; Hauser, R. A., Isaacson, S., Lisk, J. P., Hewitt, L. A. & Rowse, G. Droxidopa for the short-term treatment of symptomatic neurogenic orthostatic hypotension in Parkinson’s disease (nOH306B). Mov. Disord. 30, 646–654 (2015). (PMID: 2548761310.1002/mds.26086) ; Veazie, S. et al. Fludrocortisone for orthostatic hypotension. Cochrane Database Syst. Rev. 5, CD012868 (2021). (PMID: 34000076) ; Low, P. A. & Singer, W. Management of neurogenic orthostatic hypotension: an update. Lancet Neurol. 7, 451–458 (2008). (PMID: 18420158262816310.1016/S1474-4422(08)70088-7)
  • Entry Date(s): Date Created: 20240101 Date Completed: 20240520 Latest Revision: 20240529
  • Update Code: 20240530

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -