Zum Hauptinhalt springen

Artificial Intelligence-enabled Chest X-ray Classifies Osteoporosis and Identifies Mortality Risk.

Tsai, DJ ; Lin, C ; et al.
In: Journal of medical systems, Jg. 48 (2024-01-13), Heft 1, S. 12
Online academicJournal

Titel:
Artificial Intelligence-enabled Chest X-ray Classifies Osteoporosis and Identifies Mortality Risk.
Autor/in / Beteiligte Person: Tsai, DJ ; Lin, C ; Lin, CS ; Lee, CC ; Wang, CH ; Fang, WH
Link:
Zeitschrift: Journal of medical systems, Jg. 48 (2024-01-13), Heft 1, S. 12
Veröffentlichung: 1999- : New York, NY : Kluwer Academic/Plenum Publishers ; <i>Original Publication</i>: New York, Plenum Press., 2024
Medientyp: academicJournal
ISSN: 1573-689X (electronic)
DOI: 10.1007/s10916-023-02030-2
Schlagwort:
  • Humans
  • Artificial Intelligence
  • X-Rays
  • Absorptiometry, Photon methods
  • Osteoporosis diagnostic imaging
  • Deep Learning
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Med Syst] 2024 Jan 13; Vol. 48 (1), pp. 12. <i>Date of Electronic Publication: </i>2024 Jan 13.
  • MeSH Terms: Osteoporosis* / diagnostic imaging ; Deep Learning* ; Humans ; Artificial Intelligence ; X-Rays ; Absorptiometry, Photon / methods
  • References: Gharib, H., et al., Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract, 2010. 16(Suppl 1): p. 1-43. (PMID: 2049793810.4158/10024.GL) ; Organization, W.H. WHO scientific group on the assessment of osteoporosis at primary health care level. in Summary meeting report. 2004. ; Curry, S.J., et al., Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. Jama, 2018. 319(24): p. 2521-2531. (PMID: 2994673510.1001/jama.2018.7498) ; Shao, C.-J., et al., A nationwide seven-year trend of hip fractures in the elderly population of Taiwan. Bone, 2009. 44(1): p. 125-129. (PMID: 1884865610.1016/j.bone.2008.09.004) ; Wooltorton, E., Osteoporosis treatment: raloxifene (Evista) and stroke mortality. Cmaj, 2006. 175(2): p. 147. (PMID: 16804122149001210.1503/cmaj.060781) ; Bliuc, D., et al., Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. Jama, 2009. 301(5): p. 513-21. (PMID: 1919031610.1001/jama.2009.50) ; Ganry, O., et al., Bone mass density and risk of breast cancer and survival in older women. Eur J Epidemiol, 2004. 19(8): p. 785-92. (PMID: 1546903610.1023/B:EJEP.0000036567.60387.39) ; Cai, S., et al., Bone mineral density and osteoporosis in relation to all-cause and cause-specific mortality in NHANES: A population-based cohort study. Bone, 2020. 141: p. 115597. (PMID: 3281412510.1016/j.bone.2020.115597) ; Yamamoto, N., et al., Deep learning for osteoporosis classification using hip radiographs and patient clinical covariates. Biomolecules, 2020. 10(11): p. 1534. (PMID: 33182778769718910.3390/biom10111534) ; Mueller, D. and A. Gandjour, Cost‐effectiveness of using clinical risk factors with and without DXA for osteoporosis screening in postmenopausal women. Value in Health, 2009. 12(8): p. 1106-1117. (PMID: 1970615110.1111/j.1524-4733.2009.00577.x) ; Orimo, H., et al., Japanese 2011 guidelines for prevention and treatment of osteoporosis—executive summary. Archives of osteoporosis, 2012. 7: p. 3-20. (PMID: 23203733351770910.1007/s11657-012-0109-9) ; Sedlak, C.A., M.O. Doheny, and S.L. Jones, Osteoporosis education programs: changing knowledge and behaviors. Public health nursing, 2000. 17(5): p. 398-402. (PMID: 1101300310.1046/j.1525-1446.2000.00398.x) ; Sato, M., et al., Bone fractures and feeling at risk for osteoporosis among women in Japan: patient characteristics and outcomes in the National Health and Wellness Survey. Archives of Osteoporosis, 2014. 9: p. 1-9. (PMID: 10.1007/s11657-014-0199-7) ; Compston, J.E., M.R. McClung, and W.D. Leslie, Osteoporosis. Lancet, 2019. 393(10169): p. 364-376. (PMID: 3069657610.1016/S0140-6736(18)32112-3) ; Curtis, J.R., et al., Longitudinal trends in use of bone mass measurement among older americans, 1999-2005. J Bone Miner Res, 2008. 23(7): p. 1061-7. (PMID: 18302495249745410.1359/jbmr.080232) ; Davis, S.R., et al., Simplifying screening for osteoporosis in Australian primary care: the Prospective Screening for Osteoporosis; Australian Primary Care Evaluation of Clinical Tests (PROSPECT) study. Menopause, 2011. 18(1): p. 53-9. (PMID: 2071108110.1097/gme.0b013e3181e77468) ; Yasaka, K., et al., Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network. European radiology, 2020. 30: p. 3549-3557. (PMID: 3206071210.1007/s00330-020-06677-0) ; Pickhardt, P.J., et al., Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Annals of internal medicine, 2013. 158(8): p. 588-595. (PMID: 23588747373684010.7326/0003-4819-158-8-201304160-00003) ; Krishnaraj, A., et al., Simulating dual-energy X-ray absorptiometry in CT using deep-learning segmentation cascade. Journal of the American College of Radiology, 2019. 16(10): p. 1473-1479. (PMID: 3098268310.1016/j.jacr.2019.02.033) ; Dagan, N., et al., Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization. Nature medicine, 2020. 26(1): p. 77-82. (PMID: 3193280110.1038/s41591-019-0720-z) ; Benhamou, C.-L., et al., Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. Journal of bone and mineral research, 2001. 16(4): p. 697-704. (PMID: 1131599710.1359/jbmr.2001.16.4.697) ; LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436–444. ; Lindsey, R., et al., Deep neural network improves fracture detection by clinicians. Proceedings of the National Academy of Sciences, 2018. 115(45): p. 11591-11596. (PMID: 10.1073/pnas.1806905115) ; He, K., et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. in Proceedings of the IEEE international conference on computer vision. 2015. ; Gulshan, V., et al., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 2016. 316(22): p. 2402-2410. (PMID: 2789897610.1001/jama.2016.17216) ; Ardila, D., et al., End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature medicine, 2019. 25(6): p. 954-961. (PMID: 3111034910.1038/s41591-019-0447-x) ; Smets, J., et al., Machine learning solutions for osteoporosis—a review. Journal of bone and mineral research, 2021. 36(5): p. 833-851. (PMID: 3375168610.1002/jbmr.4292) ; Nguyen, T.P., et al., A novel approach for evaluating bone mineral density of hips based on Sobel gradient-based map of radiographs utilizing convolutional neural network. Computers in Biology and Medicine, 2021. 132: p. 104298. (PMID: 3367716710.1016/j.compbiomed.2021.104298) ; Hsieh, C.-I., et al., Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning. Nature communications, 2021. 12(1): p. 5472. (PMID: 34531406844603410.1038/s41467-021-25779-x) ; Zhang, B., et al., Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: A multicenter retrospective cohort study. Bone, 2020. 140: p. 115561. (PMID: 3273093910.1016/j.bone.2020.115561) ; Jang, M., et al., Opportunistic osteoporosis screening using chest radiographs with deep learning: Development and external validation with a cohort dataset. Journal of Bone and Mineral Research, 2022. 37(2): p. 369-377. (PMID: 3481254610.1002/jbmr.4477) ; Sato, Y., et al., Deep Learning for Bone Mineral Density and T-Score Prediction from Chest X-rays: A Multicenter Study. Biomedicines, 2022. 10(9). ; Chang, C.H., et al., Electrocardiogram-based heart age estimation by a deep learning model provides more information on the incidence of cardiovascular disorders. Front Cardiovasc Med, 2022. 9: p. 754909. (PMID: 35211522886082610.3389/fcvm.2022.754909) ; Liu, W.T., et al., A deep-learning algorithm-enhanced system integrating electrocardiograms and chest X-rays for diagnosing aortic dissection. Can J Cardiol, 2022. 38(2): p. 160-168. (PMID: 3461933910.1016/j.cjca.2021.09.028) ; Seok, H., et al., High prevalence of spine–femur bone mineral density discordance and comparison of vertebral fracture risk assessment using femoral neck and lumbar spine bone density in Korean patients. Journal of bone and mineral metabolism, 2014. 32: p. 405-410. (PMID: 2412225010.1007/s00774-013-0512-3) ; El Maghraoui, A., et al., Prevalence and risk factors of discordance in diagnosis of osteoporosis using spine and hip bone densitometry. Annals of the rheumatic diseases, 2007. 66(2): p. 271-272. (PMID: 17242019179849310.1136/ard.2006.062372) ; Kumar, D.A. and M. Anburajan, The role of hip and chest radiographs in osteoporotic evaluation among south Indian women population: a comparative scenario with DXA. Journal of endocrinological investigation, 2014. 37: p. 429-440. (PMID: 2473721410.1007/s40618-014-0074-9) ; Holcombe, S.A., et al., Measuring rib cortical bone thickness and cross section from CT. Med Image Anal, 2018. 49: p. 27-34. (PMID: 3003128810.1016/j.media.2018.07.003) ; Chen, H., et al., Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol, 2013. 2013: p. 213234. (PMID: 23573086361411910.1155/2013/213234) ; Yao, W.J., et al., Differential Changes in Regional Bone Mineral Density in Healthy Chinese: Age-Related and Sex-Dependent. Calcified Tissue International, 2001. 68(6): p. 330-336. (PMID: 1168541910.1007/s002230001210) ; Rajaei, A., et al., Correlating Whole-Body Bone Mineral Densitometry Measurements to Those From Local Anatomical Sites. Iran J Radiol, 2016. 13(1): p. e25609. (PMID: 27127575484193210.5812/iranjradiol.25609) ; Sato, Y., et al., Deep learning for bone mineral density and T-score prediction from chest X-rays: A multicenter study. Biomedicines, 2022. 10(9): p. 2323. (PMID: 36140424949622010.3390/biomedicines10092323) ; Siris, E.S., et al., Bone mineral density thresholds for pharmacological intervention to prevent fractures. Archives of internal medicine, 2004. 164(10): p. 1108-1112. (PMID: 1515926810.1001/archinte.164.10.1108) ; Kanis, J.A., et al., European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis international, 2013. 24(1): p. 23-57. (PMID: 2307968910.1007/s00198-012-2074-y) ; Camacho, P.M., et al., American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 update. Endocrine Practice, 2020. 26: p. 1-46. (PMID: 3242750310.4158/GL-2020-0524SUPPL) ; Molarius, A. and S. Janson, Self-rated health, chronic diseases, and symptoms among middle-aged and elderly men and women. Journal of Clinical Epidemiology, 2002. 55(4): p. 364-370. (PMID: 1192720410.1016/S0895-4356(01)00491-7) ; Hallberg, I., et al., Health-related quality of life after osteoporotic fractures. Osteoporosis International, 2004. 15: p. 834-841. (PMID: 1504546810.1007/s00198-004-1622-5) ; Hannan, M.T., et al., Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. Journal of Bone and Mineral Research, 2000. 15(4): p. 710-720. (PMID: 1078086310.1359/jbmr.2000.15.4.710) ; De Laet, C.E. and H.A. Pols, Fractures in the elderly: epidemiology and demography. Best Practice & Research Clinical Endocrinology & Metabolism, 2000. 14(2): p. 171-179. (PMID: 10.1053/beem.2000.0067) ; Berry, S.D., et al., Competing risk of death: an important consideration in studies of older adults. J Am Geriatr Soc, 2010. 58(4): p. 783-7. (PMID: 20345862287304810.1111/j.1532-5415.2010.02767.x) ; Kanis, J.A., et al., FRAX® and its applications to clinical practice. Bone, 2009. 44(5): p. 734-743. (PMID: 1919549710.1016/j.bone.2009.01.373) ; Nguyen, N.D., et al., Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporosis International, 2007. 18: p. 1109-1117. (PMID: 1737010010.1007/s00198-007-0362-8) ; Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser, 1994. 843: p. 1–129.
  • Grant Information: NSTC 112-2222-E-030 -002 -MY2 National Science and Technology Council; NSTC 112-2321-B-016-003 National Science and Technology Council; MOST110-2314-B-016-010-MY3 Ministry of Science and Technology, Taiwan
  • Contributed Indexing: Keywords: Artificial intelligence; Bone mass density; Chest X-ray; Deep learning; T score
  • Entry Date(s): Date Created: 20240113 Date Completed: 20240115 Latest Revision: 20240115
  • Update Code: 20240115

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -