Zum Hauptinhalt springen

Mirror-image trypsin digestion and sequencing of D-proteins.

Zhang, G ; Zhu, TF
In: Nature chemistry, Jg. 16 (2024-04-01), Heft 4, S. 592-598
academicJournal

Titel:
Mirror-image trypsin digestion and sequencing of D-proteins.
Autor/in / Beteiligte Person: Zhang, G ; Zhu, TF
Zeitschrift: Nature chemistry, Jg. 16 (2024-04-01), Heft 4, S. 592-598
Veröffentlichung: London : Nature Pub. Group, 2024
Medientyp: academicJournal
ISSN: 1755-4349 (electronic)
DOI: 10.1038/s41557-023-01411-x
Schlagwort:
  • Chromatography, Liquid methods
  • Trypsin chemistry
  • Trypsin metabolism
  • Peptides chemistry
  • Digestion
  • Tandem Mass Spectrometry methods
  • Proteins
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nat Chem] 2024 Apr; Vol. 16 (4), pp. 592-598. <i>Date of Electronic Publication: </i>2024 Jan 18.
  • MeSH Terms: Tandem Mass Spectrometry* / methods ; Proteins* ; Chromatography, Liquid / methods ; Trypsin / chemistry ; Trypsin / metabolism ; Peptides / chemistry ; Digestion
  • References: Kent, S. B. Novel protein science enabled by total chemical synthesis. Protein Sci. 28, 313–328 (2019). (PMID: 3034557910.1002/pro.3533) ; Harrison, K., Mackay, A. S., Kambanis, L., Maxwell, J. W. C. & Payne, R. J. Synthesis and applications of mirror-image proteins. Nat. Rev. Chem. 7, 383–404 (2023). (PMID: 3717359610.1038/s41570-023-00493-y) ; Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003). (PMID: 1263479310.1038/nature01511) ; Zhang, Y. Y., Fonslow, B. R., Shan, B., Baek, M. C. & Yates, J. R. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394 (2013). (PMID: 23438204375159410.1021/cr3003533) ; Merrifield, R. B. Solid phase peptide synthesis. 1. Synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963). (PMID: 10.1021/ja00897a025) ; Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994). (PMID: 797362910.1126/science.7973629) ; Milton, R., Milton, S. & Kent, S. B. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity. Science 256, 1445–1448 (1992). (PMID: 160432010.1126/science.1604320) ; Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl Acad. Sci. USA 111, 11679–11684 (2014). (PMID: 25071217413663110.1073/pnas.1410900111) ; Vinogradov, A. A., Evans, E. D. & Pentelute, B. L. Total synthesis and biochemical characterization of mirror image barnase. Chem. Sci. 6, 2997–3002 (2015). (PMID: 29403637572945010.1039/C4SC03877K) ; Wang, Z., Xu, W., Liu, L. & Zhu, T. F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem. 8, 698–704 (2016). (PMID: 2732509710.1038/nchem.2517) ; Jiang, W. et al. Mirror-image polymerase chain reaction. Cell Discov. 3, 17037 (2017). (PMID: 29051832564388410.1038/celldisc.2017.37) ; Pech, A. et al. A thermostable D-polymerase for mirror-image PCR. Nucleic Acids Res. 45, 3997–4005 (2017). (PMID: 28158820560524210.1093/nar/gkx079) ; Fan, C., Deng, Q. & Zhu, T. F. Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nat. Biotechnol. 39, 1548–1555 (2021). (PMID: 3432654910.1038/s41587-021-00969-6) ; Xu, Y. & Zhu, T. F. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 378, 405–412 (2022). (PMID: 3630202210.1126/science.abm0646) ; Vestling, M. M., Murphy, C. M. & Fenselau, C. Recognition of trypsin autolysis products by high-performance liquid chromatography and mass spectrometry. Anal. Chem. 62, 2391–2394 (1990). (PMID: 229148410.1021/ac00220a025) ; Bunkenborg, J., Espadas, G. & Molina, H. Cutting edge proteomics: benchmarking of six commercial trypsins. J. Proteome Res. 12, 3631–3641 (2013). (PMID: 2381957510.1021/pr4001465) ; Kassell, B. & Kay, J. Zymogens of proteolytic enzymes. Science 180, 1022–1027 (1973). (PMID: 457473210.1126/science.180.4090.1022) ; Sahin-Toth, M. Human cationic trypsinogen. Role of Asn-21 in zymogen activation and implications in hereditary pancreatitis. J. Biol. Chem. 275, 22750–22755 (2000). (PMID: 10801865) ; Kukor, Z., Toth, M. & Sahin-Toth, M. Human anionic trypsinogen: properties of autocatalytic activation and degradation and implications in pancreatic diseases. Eur. J. Biochem. 270, 2047–2058 (2003). (PMID: 1270906510.1046/j.1432-1033.2003.03581.x) ; Zhao, M., Wu, F. & Xu, P. Development of a rapid high-efficiency scalable process for acetylated Sus scrofa cationic trypsin production from Escherichia coli inclusion bodies. Protein Expr. Purif. 116, 120–126 (2015). (PMID: 2631823810.1016/j.pep.2015.08.025) ; Fang, G. M. et al. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 50, 7645–7649 (2011). (PMID: 10.1002/anie.201100996) ; Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007). (PMID: 10.1002/anie.200704195) ; Yan, L. Z. & Dawson, P. E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533 (2001). (PMID: 1145656410.1021/ja003265m) ; Slechtova, T., Gilar, M., Kalikova, K. & Tesarova, E. Insight into trypsin miscleavage: comparison of kinetic constants of problematic peptide sequences. Anal. Chem. 87, 7636–7643 (2015). (PMID: 2615832310.1021/acs.analchem.5b00866) ; Ling, J. J. et al. Mirror-image 5S ribonucleoprotein complexes. Angew. Chem. Int. Ed. 59, 3724–3731 (2020). (PMID: 10.1002/anie.201914799) ; Keil, B. I. Specificity of Proteolysis (Springer, 1992). ; Yang, H. et al. Precision de novo peptide sequencing using mirror proteases of Ac-LysargiNase and trypsin for large-scale proteomics. Mol. Cell Proteomics 18, 773–785 (2019). (PMID: 30622160644235810.1074/mcp.TIR118.000918) ; Xu, W. et al. Total chemical synthesis of a thermostable enzyme capable of polymerase chain reaction. Cell Discov. 3, 17008 (2017). (PMID: 28265464533536110.1038/celldisc.2017.8) ; Wang, M. et al. Mirror-image gene transcription and reverse transcription. Chem 5, 848–857 (2019). (PMID: 10.1016/j.chempr.2019.01.001) ; Ng, C. C. A. et al. Data storage using peptide sequences. Nat. Commun. 12, 4242 (2021). (PMID: 34257289827780710.1038/s41467-021-24496-9) ; Zheng, J. S. et al. A mirror-image protein-based information barcoding and storage technology. Sci. Bull. 66, 1542–1549 (2021). (PMID: 10.1016/j.scib.2021.03.010) ; Rossler, S. L., Grob, N. M., Buchwald, S. L. & Pentelute, B. L. Abiotic peptides as carriers of information for the encoding of small-molecule library synthesis. Science 379, 939–945 (2023). (PMID: 368627671006480510.1126/science.adf1354) ; Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99, 103–115 (1999). (PMID: 1052099810.1016/S0092-8674(00)80066-5) ; Mandal, K. et al. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography. Proc. Natl Acad. Sci. USA 109, 14779–14784 (2012). (PMID: 22927390344319110.1073/pnas.1210483109) ; Chang, H. N. et al. Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy. Angew. Chem. Int. Ed. 54, 11760–11764 (2015). (PMID: 10.1002/anie.201506225) ; Uppalapati, M. et al. A potent D-protein antagonist of VEGF-A is nonimmunogenic, metabolically stable, and longer-circulating in vivo. ACS Chem. Biol. 11, 1058–1065 (2016). (PMID: 2674534510.1021/acschembio.5b01006) ; Marinec, P. S. et al. A non-immunogenic bivalent D-protein potently inhibits retinal vascularization and tumor growth. ACS Chem. Biol. 16, 548–556 (2021). (PMID: 3362146610.1021/acschembio.1c00017) ; Zuckermann, R. N., Kerr, J. M., Siani, M. A., Banville, S. C. & Santi, D. V. Identification of highest-affinity ligands by affinity selection from equimolar peptide mixtures generated by robotic synthesis. Proc. Natl Acad. Sci. USA 89, 4505–4509 (1992). (PMID: 15847834911110.1073/pnas.89.10.4505) ; Maaty, W. S. & Weis, D. D. Label-free, in-solution screening of peptide libraries for binding to protein targets using hydrogen exchange mass spectrometry. J. Am. Chem. Soc. 138, 1335–1343 (2016). (PMID: 26741284529313310.1021/jacs.5b11742) ; Quartararo, A. J. et al. Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nat. Commun. 11, 3183 (2020). (PMID: 32576815731139610.1038/s41467-020-16920-3) ; Burkhart, J. M., Schumbrutzki, C., Wortelkamp, S., Sickmann, A. & Zahedi, R. P. Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J. Proteomics 75, 1454–1462 (2012). (PMID: 2216674510.1016/j.jprot.2011.11.016) ; Peplow, M. A conversation with Ting Zhu. ACS Cent. Sci. 4, 783–784 (2018). (PMID: 30062104606283310.1021/acscentsci.8b00432) ; Chen, J., Chen, M. & Zhu, T. F. Translating protein enzymes without aminoacyl-tRNA synthetases. Chem 7, 786–798 (2021). (PMID: 10.1016/j.chempr.2021.01.017) ; Service, R. F. A big step toward mirror-image ribosomes. Science 378, 345–346 (2022). (PMID: 3630203010.1126/science.adf4963) ; Cravatt, B. F., Simon, G. M. & Yates, J. R. 3rd The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000 (2007). (PMID: 1807557810.1038/nature06525) ; Wang, X. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553–3565 (2007). (PMID: 1732392410.1021/bi061994u) ; Ori, A. et al. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648 (2013). (PMID: 23511206361994210.1038/msb.2013.4) ; Chen, S. S. & Williamson, J. R. Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry. J. Mol. Biol. 425, 767–779 (2013). (PMID: 2322832910.1016/j.jmb.2012.11.040) ; Coin, I. The depsipeptide method for solid-phase synthesis of difficult peptides. J. Pept. Sci. 16, 223–230 (2010). (PMID: 2040192410.1002/psc.1224) ; Huang, Y.-C. et al. Facile synthesis of C-terminal peptide hydrazide and thioester of NY-ESO-1 (A39-A68) from an Fmoc-hydrazine 2-chlorotrityl chloride resin. Tetrahedron 70, 2951–2955 (2014). (PMID: 10.1016/j.tet.2014.03.022) ; Huang, Y. C. et al. Synthesis of L- and D-ubiquitin by one-pot ligation and metal-free desulfurization. Chemistry 22, 7623–7628 (2016). (PMID: 2707596910.1002/chem.201600101) ; Fang, G. M., Wang, J. X. & Liu, L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 51, 10347–10350 (2012). (PMID: 10.1002/anie.201203843) ; Sohma, Y. et al. ‘O-Acyl isopeptide method’ for the efficient synthesis of difficult sequence-containing peptides: use of ‘O-acyl isodipeptide unit’. Tetrahedron Lett. 47, 3013–3017 (2006). (PMID: 10.1016/j.tetlet.2006.03.017) ; Maity, S. K., Jbara, M., Laps, S. & Brik, A. Efficient palladium-assisted one-pot deprotection of (acetamidomethyl)cysteine following native chemical ligation and/or desulfurization to expedite chemical protein synthesis. Angew. Chem. Int. Ed. 55, 8108–8112 (2016). (PMID: 10.1002/anie.201603169)
  • Grant Information: 21925702 National Natural Science Foundation of China (National Science Foundation of China)
  • Substance Nomenclature: EC 3.4.21.4 (Trypsin) ; 0 (Proteins) ; 0 (Peptides)
  • Entry Date(s): Date Created: 20240118 Date Completed: 20240408 Latest Revision: 20240408
  • Update Code: 20240408

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -