Zum Hauptinhalt springen

Pyrogeography in flux: Reorganization of Australian fire regimes in a hotter world.

Cunningham, CX ; Williamson, GJ ; et al.
In: Global change biology, Jg. 30 (2024), Heft 1, S. e17130
Online academicJournal

Titel:
Pyrogeography in flux: Reorganization of Australian fire regimes in a hotter world.
Autor/in / Beteiligte Person: Cunningham, CX ; Williamson, GJ ; Nolan, RH ; Teckentrup, L ; Boer, MM ; Bowman, DMJS
Link:
Zeitschrift: Global change biology, Jg. 30 (2024), Heft 1, S. e17130
Veröffentlichung: <Jan. 2013-> : Oxford : Blackwell Pub. ; <i>Original Publication</i>: Oxford, UK : Blackwell Science, 1995-, 2024
Medientyp: academicJournal
ISSN: 1365-2486 (electronic)
DOI: 10.1111/gcb.17130
Schlagwort:
  • Humans
  • Australia
  • Forests
  • Climate
  • Climate Change
  • Ecosystem
  • Fires
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Glob Chang Biol] 2024 Jan; Vol. 30 (1), pp. e17130.
  • MeSH Terms: Ecosystem* ; Fires* ; Humans ; Australia ; Forests ; Climate ; Climate Change
  • References: Abatzoglou, J. T., Williams, A. P., & Barbero, R. (2019). Global emergence of anthropogenic climate change in fire weather indices. Geophysical Research Letters, 46(1), 326-336. https://doi.org/10.1029/2018GL080959. ; Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J. R., Clarke, H., Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., & Boer, M. M. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2(1), 8. https://doi.org/10.1038/s43247-020-00065-8. ; Adeleye, M. A., Haberle, S. G., Connor, S. E., Stevenson, J., & Bowman, D. M. J. S. (2021). Indigenous fire-managed landscapes in southeast Australia during the Holocene-New insights from the Furneaux Group Islands, Bass Strait. Fire, 4(2), 17. https://doi.org/10.3390/fire4020017. ; Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L., & Bradstock, R. A. (2013). Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6442-6447. https://doi.org/10.1073/pnas.1211466110. ; Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., & Mahood, A. L. (2017). Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences of the United States of America, 114(11), 2946-2951. https://doi.org/10.1073/pnas.1617394114. ; Bassett, O. D., Prior, L. D., Slijkerman, C. M., Jamieson, D., & Bowman, D. M. J. S. (2015). Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. Forest Ecology and Management, 342, 39-48. https://doi.org/10.1016/j.foreco.2015.01.008. ; Beaumont, L. J., Pitman, A., Perkins, S., Zimmermann, N. E., Yoccoz, N. G., & Thuiller, W. (2011). Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2306-2311. https://doi.org/10.1073/pnas.1007217108. ; Bergstrom, D. M., Wienecke, B. C., van den Hoff, J., Hughes, L., Lindenmayer, D. B., Ainsworth, T. D., Baker, C. M., Bland, L., Bowman, D. M. J. S., Brooks, S. T., Canadell, J. G., Constable, A. J., Dafforn, K. A., Depledge, M. H., Dickson, C. R., Duke, N. C., Helmstedt, K. J., Holz, A., Johnson, C. R., … Shaw, J. D. (2021). Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology, 27(9), 1692-1703. https://doi.org/10.1111/gcb.15539. ; Bi, D., Dix, M., Marsland, S., O'Farrell, S., Sullivan, A., Bodman, R., Law, R., Harman, I., Srbinovsky, J., Rashid, H. A., & Heerdegen, A. (2020). Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. Journal of Southern Hemisphere Earth Systems Science, 70(1), 225-251. https://doi.org/10.1071/ES19040. ; Blonder, B., Lamanna, C., Violle, C., & Enquist, B. J. (2014). The n-dimensional hypervolume. Global Ecology and Biogeography, 23(5), 595-609. https://doi.org/10.1111/geb.12146. ; Blonder, B., Morrow, C. B., Maitner, B., Harris, D. J., Lamanna, C., Violle, C., Enquis, B. J., & Kerkhoff, A. J. (2018). New approaches for delineating n-dimensional hypervolumes. Methods in Ecology and Evolution, 9(2), 305-319. https://doi.org/10.1111/2041-210X.12865. ; Boer, M. M., Bowman, D. M. J. S., Murphy, B. P., Cary, G. J., Cochrane, M. A., Fensham, R. J., Williams, R. J., Murphy, B. P., Krawchuk, M. A., Bradstock, R. A., Cary, G. J., & Bradstock, R. A. (2016). Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes. Environmental Research Letters, 11(6), 065002. https://doi.org/10.1088/1748-9326/11/6/065002. ; Boer, M. M., De Dios, V. R., Stefaniak, E. Z., & Bradstock, R. A. (2021). A hydroclimatic model for the distribution of fire on Earth. Environmental Research Communications, 3(3), 035001. https://doi.org/10.1088/2515-7620/abec1f. ; Boer, M. M., Resco de Dios, V., & Bradstock, R. A. (2020). Unprecedented burn area of Australian mega forest fires. Nature Climate Change, 10(3), 171-172. https://doi.org/10.1038/s41558-020-0716-1. ; Boisramé, G., Thompson, S., Collins, B., & Stephens, S. (2017). Managed wildfire effects on forest resilience and water in the Sierra Nevada. Ecosystems, 20(4), 717-732. https://doi.org/10.1007/s10021-016-0048-1. ; Bond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165(2), 525-538. https://doi.org/10.1111/j.1469-8137.2004.01252.x. ; Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., Defries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., … Pyne, S. J. (2009). Fire in the Earth system. Science, 324(5926), 481-484. https://doi.org/10.1126/science.1163886. ; Bowman, D. M. J. S., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van der Werf, G. R., & Flannigan, M. (2020). Vegetation fires in the Anthropocene. Nature Reviews Earth and Environment, 1(10), 500-515. https://doi.org/10.1038/s43017-020-0085-3. ; Bowman, D. M. J. S., & Murphy, B. P. (2011). Australia-A model system for the development of pyrogeography. Fire Ecology, 7(1), 5-12. https://doi.org/10.4996/fireecology.0701005. ; Bowman, D. M. J. S., Murphy, B. P., Williamson, G. J., & Cochrane, M. A. (2014). Pyrogeographic models, feedbacks and the future of global fire regimes. Global Ecology and Biogeography, 23(7), 821-824. https://doi.org/10.1111/geb.12180. ; Bowman, D. M. J. S., & Sharples, J. J. (2023). Taming the flame, from local to global extreme wildfires. Science, 381(6658), 616-619. https://doi.org/10.1126/science.adi8066. ; Bowman, D. M. J. S., Williamson, G. J., Johnston, F. H., Bowman, C. J. W., Murphy, B. P., Roos, C. I., Trauernicht, C., Rostron, J., & Prior, L. D. (2022). Population collapse of a Gondwanan conifer follows the loss of Indigenous fire regimes in a northern Australian savanna. Scientific Reports, 12(1), 9081. https://doi.org/10.1038/s41598-022-12946-3. ; Bowman, D. M. J. S., Williamson, G. J., Ndalila, M., Roxburgh, S. H., Suitor, S., & Keenan, R. J. (2023). Wildfire national carbon accounting: How natural and anthropogenic landscape fires emissions are treated in the 2020 Australian government greenhouse gas accounts report to the UNFCCC. Carbon Balance and Management, 18(1), 14. https://doi.org/10.1186/s13021-023-00231-3. ; Bowman, D. M. J. S., Williamson, G. J., Price, O. F., Ndalila, M. N., & Bradstock, R. A. (2021). Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell & Environment, 44(2), 347-355. https://doi.org/10.1111/pce.13916. ; Bradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145-158. https://doi.org/10.1111/j.1466-8238.2009.00512.x. ; Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324. ; Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261-266. https://doi.org/10.1126/science.aat7631. ; Buermann, W., Forkel, M., O'Sullivan, M., Sitch, S., Friedlingstein, P., Haverd, V., Jain, A. K., Kato, E., Kautz, M., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Tian, H., Wiltshire, A. J., Zhu, D., Smith, W. K., & Richardson, A. D. (2018). Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature, 562(7725), 110-114. https://doi.org/10.1038/s41586-018-0555-7. ; Canadell, J. G., Meyer, C. P., Cook, G. D., Dowdy, A., Briggs, P. R., Knauer, J., Pepler, A., & Haverd, V. (2021). Multi-decadal increase of forest burned area in Australia is linked to climate change. Nature Communications, 12(1), 6921. https://doi.org/10.1038/s41467-021-27225-4. ; Chaivaranont, W., Evans, J. P., Liu, Y. Y., & Sharples, J. J. (2018). Estimating grassland curing with remotely sensed data. Natural Hazards and Earth System Sciences, 18(6), 1535-1554. https://doi.org/10.5194/nhess-18-1535-2018. ; Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752-755. https://doi.org/10.1038/nature11688. ; Chuvieco, E., Giglio, L., & Justice, C. (2008). Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Global Change Biology, 14(7), 1488-1502. https://doi.org/10.1111/j.1365-2486.2008.01585.x. ; Clarke, H., Nolan, R. H., De Dios, V. R., Bradstock, R., Griebel, A., Khanal, S., & Boer, M. M. (2022). Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nature Communications, 13(1), 7161. https://doi.org/10.1038/s41467-022-34966-3. ; Collins, L., Bradstock, R. A., Clarke, H., Clarke, M. F., Nolan, R. H., & Penman, T. D. (2021). The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environmental Research Letters, 16(4), 044029. https://doi.org/10.1088/1748-9326/abeb9e. ; Cui, X., Alam, M. A., Perry, G. L. W., Paterson, A. M., Wyse, S. V., & Curran, T. J. (2019). Green firebreaks as a management tool for wildfires: Lessons from China. Journal of Environmental Management, 233, 329-336. https://doi.org/10.1016/j.jenvman.2018.12.043. ; Dahinden, F., Fischer, E. M., & Knutti, R. (2017). Future local climate unlike currently observed anywhere. Environmental Research Letters, 12(8), 084004. https://doi.org/10.1088/1748-9326/aa75d7. ; Didan, K. (2015). MOD13C2 MODIS/Terra vegetation indices monthly L3 global 0.05 deg CMG V006 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD13C2.006. ; Elia, M., Giannico, V., Ascoli, D., Argañaraz, J. P., D'Este, M., Spano, G., Lafortezza, R., & Sanesi, G. (2022). Uncovering current pyroregions in Italy using wildfire metrics. Ecological Processes, 11(1), 15. https://doi.org/10.1186/s13717-022-00360-6. ; Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D., & Williamson, G. J. (2022). Global increase in wildfire risk due to climate-driven declines in fuel moisture. Global Change Biology, 28(4), 1544-1559. https://doi.org/10.1111/gcb.16006. ; Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086. ; Ficklin, D. L., & Novick, K. A. (2017). Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. Journal of Geophysical Research: Atmospheres, 122(4), 2061-2079. https://doi.org/10.1002/2016JD025855. ; Filkov, A. I., Ngo, T., Matthews, S., Telfer, S., & Penman, T. D. (2020). Impact of Australia's catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. Journal of Safety Science and Resilience, 1(1), 44-56. https://doi.org/10.1016/j.jnlssr.2020.06.009. ; Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal, 41(8), 578-588. https://doi.org/10.1093/comjnl/41.8.578. ; Furlaud, J. M., Williamson, G. J., & Bowman, D. M. J. S. (2023). Mechanical treatments and prescribed burning can reintroduce low-severity fire in southern Australian temperate sclerophyll forests. Journal of Environmental Management, 344, 118301. https://doi.org/10.1016/j.jenvman.2023.118301. ; Galizia, L. F., Barbero, R., Rodrigues, M., Ruffault, J., Pimont, F., & Curt, T. (2023). Global warming reshapes European pyroregions. Earth's Future, 11(5), e2022EF003182. https://doi.org/10.1029/2022EF003182. ; Giglio, L., Csiszar, I., & Justice, C. O. (2006). Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Journal of Geophysical Research: Biogeosciences, 111(G2), 142. https://doi.org/10.1029/2005JG000142. ; Giglio, L., Justice, C., Boschetti, L., & Roy, D. (2015). MCD64A1 MODIS/Terra+Aqua burned area monthly L3 global 500m SIN grid V006. Distributed by NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD64A1.006. ; Giglio, L., Schroeder, W., Hall, J., & Justice, C. (2018). MODIS collection 6 active fire product user's guide revision B. NASA. ; Gill, A. M. (1975). Fire and the Australian flora: A review. Australian Forestry, 38(1), 4-25. https://doi.org/10.1080/00049158.1975.10675618. ; Grinder, R. M., & Wiens, J. J. (2023). Niche width predicts extinction from climate change and vulnerability of tropical species. Global Change Biology, 29(3), 618-630. https://doi.org/10.1111/gcb.16486. ; Grose, M. R., Narsey, S., Delage, F. P., Dowdy, A. J., Bador, M., Boschat, G., Chung, C., Kajtar, J. B., Rauniyar, S., Freund, M. B., Lyu, K., Rashid, H., Zhang, X., Wales, S., Trenham, C., Holbrook, N. J., Cowan, T., Alexander, L., Arblaster, J. M., & Power, S. (2020). Insights from CMIP6 for Australia's future climate. Earth's Future, 8(5), e2019EF001469. https://doi.org/10.1029/2019EF001469. ; Hanes, C. C., Wang, X., Jain, P., Parisien, M.-A., Little, J. M., & Flannigan, M. D. (2019). Fire-regime changes in Canada over the last half century. Canadian Journal of Forest Research, 49(3), 256-269. ; Hankin, L. E., Anderson, C. T., Dickman, G. J., Bevington, P., & Stephens, S. L. (2023). How forest management changed the course of the Washburn fire and the fate of Yosemite's giant sequoias (Sequoiadendron giganteum). Fire Ecology, 19(1), 40. https://doi.org/10.1186/s42408-023-00202-6. ; Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Sally, A., Florent, M., Arnold, S. R., Paulo, A., Dominique, B., Philippe, C., Matthew, F., Pierre, F., Thomas, H., Kaplan Jed, O., Silvia, K., Wolfgang, K., Gitta, L., … Yue, C. (2016). The status and challenge of global fire modelling. Biogeosciences, 13(11), 3359-3375. https://doi.org/10.5194/bg-13-3359-2016. ; Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A., Perkins-Kirkpatrick, S. E., Mitchell, P. J., Nicotra, A. B., McGregor, S., Andrew, N. R., Letnic, M., Kearney, M. R., Wernberg, T., Hutley, L. B., Chambers, L. E., Fletcher, M.-S., Keatley, M. R., Woodward, C. A., Williamson, G., … Bowman, D. (2018). Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 8(7), 579-587. https://doi.org/10.1038/s41558-018-0187-9. ; Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., & Zelinka, M. (2022). Climate simulations: Recognize the ‘hot model’ problem. Nature, 605(7908), 26-29. ; Hausfather, Z., & Peters, G. P. (2020). Emissions - The ‘business as usual’ story is misleading. Nature, 577(7792), 618-620. ; Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Davis, S. J., Law, R. M., Meyer, C. P., Peters, G. P., PickettHeaps, C., & Sherman, B. (2013). The Australian terrestrial carbon budget. Biogeosciences, 10(2), 851-869. https://doi.org/10.5194/bg-10-851-2013. ; Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography, 42, 1648-1657. https://doi.org/10.1111/ecog.04617. ; Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences of the United States of America, 106(Suppl_2), 19659-19665. https://doi.org/10.1073/pnas.0905137106. ; Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T., & Flannigan, M. D. (2022). Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nature Climate Change, 12(1), 63-70. https://doi.org/10.1038/s41558-021-01224-1. ; Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L., Collins, L., Crous, K. Y., De Kauwe, M. G., Dos Santos, B. M., Emmerson, K. M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S. N., … Ellsworth, D. S. (2020). The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 580(7802), 227-231. https://doi.org/10.1038/s41586-020-2128-9. ; Johnson, C. N., Prior, L. D., Archibald, S., Poulos, H. M., Barton, A. M., Williamson, G. J., & Bowman, D. M. J. S. (2018). Can trophic rewilding reduce the impact of fire in a more flammable world? Philosophical Transactions of the Royal Society, B: Biological Sciences, 373(1761), 20170443. https://doi.org/10.1098/rstb.2017.0443. ; Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., & Bowman, D. M. J. S. (2015). Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6(1), 7537. https://doi.org/10.1038/ncomms8537. ; Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., & Le Quéré, C. (2022). Global and regional trends and drivers of fire under climate change. Reviews of Geophysics, 60(3), e2020RG000726. https://doi.org/10.1029/2020RG000726. ; Keith, D. A., Ferrer-Paris, J. R., Nicholson, E., Bishop, M. J., Polidoro, B. A., Ramirez-Llodra, E., Tozer, M. G., Nel, J. L., Mac Nally, R., Gregr, E. J., Watermeyer, K. E., Essl, F., Faber-Langendoen, D., Franklin, J., Lehmann, C. E. R., Etter, A., Roux, D. J., Stark, J. S., Rowland, J. A., … Kingsford, R. T. (2022). A function-based typology for Earth's ecosystems. Nature, 610(7932), 513-518. https://doi.org/10.1038/s41586-022-05318-4. ; Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz, C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G., … Yao, M.-S. (2020). GISS-E2.1: Configurations and climatology. Journal of Advances in Modeling Earth Systems, 12(8), e2019MS002025. https://doi.org/10.1029/2019MS002025. ; Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A. F., Buckland, S. T., Canelles, Q., Clarke, M. F., Fortin, M. J., Hermoso, V., Herrando, S., Keane, R. E., Lake, F. K., McCarthy, M. A., Morán-Ordóñez, A., Parr, C. L., Pausas, J. G., … Brotons, L. (2020). Fire and biodiversity in the Anthropocene. Science, 370(6519), eabb0355. https://doi.org/10.1126/science.abb0355. ; King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M., & Brown, J. R. (2020). The role of climate variability in Australian drought. Nature Climate Change, 10(3), 177-179. https://doi.org/10.1038/s41558-020-0718-z. ; Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J., & Hayhoe, K. (2009). Global pyrogeography: The current and future distribution of wildfire. PLoS One, 4(4), e5102. https://doi.org/10.1371/journal.pone.0005102. ; Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1-26. ; Langan, L., Higgins, S. I., & Scheiter, S. (2017). Climate-biomes, pedo-biomes or pyro-biomes: Which world view explains the tropical forest-savanna boundary in South America? Journal of Biogeography, 44(10), 2319-2330. https://doi.org/10.1111/jbi.13018. ; Le Breton, T. D., Lyons, M. B., Nolan, R. H., Penman, T., Williamson, G. J., & Ooi, M. K. J. (2022). Megafire-induced interval squeeze threatens vegetation at landscape scales. Frontiers in Ecology and the Environment, 20(5), 327-334. https://doi.org/10.1002/fee.2482. ; Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18-22. ; Linley, G. D., Jolly, C. J., Doherty, T. S., Geary, W. L., Armenteras, D., Belcher, C. M., Bird, R. B., Duane, A., Fletcher, M.-S., Giorgis, M. A., Haslem, A., Jones, G. M., Kelly, L. T., Lee, C. K. F., Nolan, R. H., Parr, C. L., Pausas, J. G., Price, J. N., Regos, A., … Nimmo, D. G. (2022). What do you mean, ‘megafire’? Global Ecology and Biogeography, 31(10), 1906-1922. https://doi.org/10.1111/geb.13499. ; Marchin, R. M., Backes, D., Ossola, A., Leishman, M. R., Tjoelker, M. G., & Ellsworth, D. S. (2022). Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. Global Change Biology, 28(3), 1133-1146. https://doi.org/10.1111/gcb.15976. ; McDowell, N. G., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Caceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth and Environment, 3(5), 294-308. https://doi.org/10.1038/s43017-022-00272-1. ; McIntyre, A., Tan, P., & Lymburner, L. (2015). Geoscience Australia land cover (Terra MODIS). https://cmi.ga.gov.au/data-products/dea/131/geoscience-australia-land-cover-terra-modis-to-be-depricated#basics. ; Mora, C., Caldwell, I. R., Caldwell, J. M., Fisher, M. R., Genco, B. M., & Running, S. W. (2015). Suitable days for plant growth disappear under projected climate change: Potential human and biotic vulnerability. PLoS Biology, 13(6), e1002167. https://doi.org/10.1371/journal.pbio.1002167. ; Moritz, M. A., Krawchuk, M. A., & Parisien, M.-A. (2010). Pyrogeography: Understanding the ecological niche of fire. PAGES News, 18, 83-85. ; Moritz, M. A., Parisien, M.-A., Batllori, E., Krawchuk, M. A., Van Dorn, J., Ganz, D. J., & Hayhoe, K. (2012). Climate change and disruptions to global fire activity. Ecosphere, 3(6), art49. https://doi.org/10.1890/ES11-00345.1. ; Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., & Marotzke, J. (2018). A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems, 10(7), 1383-1413. https://doi.org/10.1029/2017MS001217. ; Murphy, B. P., & Bowman, D. M. J. S. (2012). What controls the distribution of tropical forest and savanna? Ecology Letters, 15(7), 748-758. https://doi.org/10.1111/j.1461-0248.2012.01771.x. ; Murphy, B. P., Bradstock, R. A., Boer, M. M., Carter, J., Cary, G. J., Cochrane, M. A., Fensham, R., Russell-Smith, J., Williamson, G., & Bowman, D. M. J. S. (2013). Fire regimes of Australia: A pyrogeographic model system. Journal of Biogeography, 40(6), 1048-1058. https://doi.org/10.1111/jbi.12065. ; Nimmo, D. G., Andersen, A. N., Archibald, S., Boer, M. M., Brotons, L., Parr, C. L., & Tingley, M. W. (2022). Fire ecology for the 21st century: Conserving biodiversity in the age of megafire. Diversity and Distributions, 28(3), 350-356. ; Nolan, R. H., Boer, M. M., Collins, L., Resco de Dios, V., Clarke, H., Jenkins, M., Kenny, B., & Bradstock, R. A. (2020). Causes and consequences of eastern Australia's 2019-20 season of mega-fires. Global Change Biology, 26(3), 1039-1041. https://doi.org/10.1111/gcb.14987. ; Nolan, R. H., Collins, L., Leigh, A., Ooi, M. K. J., Curran, T. J., Fairman, T. A., Resco de Dios, V., & Bradstock, R. (2021). Limits to post-fire vegetation recovery under climate change. Plant, Cell & Environment, 44(11), 3471-3489. https://doi.org/10.1111/pce.14176. ; Nolan, R. H., Resco de Dios, V., Boer, M. M., Caccamo, G., Goulden, M. L., & Bradstock, R. A. (2016). Predicting dead fine fuel moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data. Remote Sensing of Environment, 174, 100-108. https://doi.org/10.1016/j.rse.2015.12.010. ; Otón, G., Lizundia-Loiola, J., Pettinari, M. L., & Chuvieco, E. (2021). Development of a consistent global long-term burned area product (1982-2018) based on AVHRR-LTDR data. International Journal of Applied Earth Observation and Geoinformation, 103, 102473. https://doi.org/10.1016/j.jag.2021.102473. ; Pais, C., Gonzalez-Olabarria, J. R., Elimbi Moudio, P., Garcia-Gonzalo, J., González, M. C., & Shen, Z.-J. M. (2023). Global scale coupling of pyromes and fire regimes. Communications Earth & Environment, 4(1), 267. https://doi.org/10.1038/s43247-023-00881-8. ; Pausas, J. G., & Keeley, J. E. (2021). Wildfires and global change. Frontiers in Ecology and the Environment, 19(7), 387-395. https://doi.org/10.1002/fee.2359. ; Peterson, R. A. (2021). Finding optimal normalizing transformations via best normalize. R Journal, 13(1), 310-329. ; Peterson, R. A., & Cavanaugh, J. E. (2020). Ordered quantile normalization: A semiparametric transformation built for the cross-validation era. Journal of Applied Statistics, 47(13-15), 2312-2327. https://doi.org/10.1080/02664763.2019.1630372. ; Power, M. J., Marlon, J., Ortiz, N., Bartlein, P. J., Harrison, S. P., Mayle, F. E., Ballouche, A., Bradshaw, R. H. W., Carcaillet, C., Cordova, C., Mooney, S., Moreno, P. I., Prentice, I. C., Thonicke, K., Tinner, W., Whitlock, C., Zhang, Y., Zhao, Y., Ali, A. A., … Zhang, J. H. (2008). Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 30(7), 887-907. https://doi.org/10.1007/s00382-007-0334-x. ; R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. ; Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Crespo Cuaresma, J., Samir, K. C., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009. ; Rifai, S. W., De Kauwe, M. G., Ukkola, A. M., Cernusak, L. A., Meir, P., Medlyn, B. E., & Pitman, A. J. (2022). Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences, 19(2), 491-515. https://doi.org/10.5194/bg-19-491-2022. ; Romps, D. M., Seeley, J. T., Vollaro, D., & Molinari, J. (2014). Projected increase in lightning strikes in the United States due to global warming. Science, 346(6211), 851-854. https://doi.org/10.1126/science.1259100. ; Running, S., & Zhao, M. (2019). MOD17A3HGF MODIS/Terra net primary production gap-filled yearly L4 global 500 m SIN grid V006 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD17A3HGF.006. ; Russell-Smith, J., Yates, C. P., Whitehead, P. J., Smith, R., Craig, R., Allan, G. E., Thackway, R., Frakes, I., Cridland, S., Meyer, M. C. P., & Gill, A. M. (2007). Bushfires down under: Patterns and implications of contemporary Australian landscape burning. International Journal of Wildland Fire, 16(4), 361-377. https://doi.org/10.1071/WF07018. ; Ruthrof, K. X., Fontaine, J. B., Matusick, G., Breshears, D. D., Law, D. J., Powell, S., & Hardy, G. (2016). How drought-induced forest die-off alters microclimate and increases fuel loadings and fire potentials. International Journal of Wildland Fire, 25(8), 819-830. https://doi.org/10.1071/WF15028. ; Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R Journal, 8(1), 289-317. ; Staver, A. C., Archibald, S., & Levin, S. (2011a). Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 92(5), 1063-1072. https://doi.org/10.1890/10-1684.1. ; Staver, A. C., Archibald, S., & Levin, S. A. (2011b). The global extent and determinants of savanna and forest as alternative biome states. Science, 334(6053), 230-232. https://doi.org/10.1126/science.1210465. ; Steffensen, V. (2020). Fire country: How indigenous fire management could help save Australia. CSIRO Publishing. ; Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., & Kimoto, M. (2019). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 12(7), 2727-2765. https://doi.org/10.5194/gmd-12-2727-2019. ; Turco, M., Abatzoglou, J. T., Herrera, S., Zhuang, Y., Jerez, S., Lucas, D. D., AghaKouchak, A., & Cvijanovic, I. (2023). Anthropogenic climate change impacts exacerbate summer forest fires in California. Proceedings of the National Academy of Sciences of the United States of America, 120(25), e2213815120. https://doi.org/10.1073/pnas.2213815120. ; Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G., & Pitman, A. J. (2020). Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophysical Research Letters, 47(11), e2020GL087820. https://doi.org/10.1029/2020GL087820. ; van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers, B. M., Chen, Y., Veraverbeke, S., Louis, G., & Morton, D. C. (2022). Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED). Geoscientific Model Development, 15(22), 8411-8437. https://doi.org/10.5194/gmd-15-8411-2022. ; Veraverbeke, S., Rogers, B. M., Goulden, M. L., Jandt, R. R., Miller, C. E., Wiggins, E. B., & Randerson, J. T. (2017). Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7(7), 529-534. https://doi.org/10.1038/nclimate3329. ; Wasko, C., Nathan, R., Stein, L., & O'Shea, D. (2021). Evidence of shorter more extreme rainfalls and increased flood variability under climate change. Journal of Hydrology, 603, 126994. https://doi.org/10.1016/j.jhydrol.2021.126994. ; Whitman, E., Parks, S. A., Holsinger, L. M., & Parisien, M.-A. (2022). Climate-induced fire regime amplification in Alberta, Canada. Environmental Research Letters, 17(5), 055003. https://doi.org/10.1088/1748-9326/ac60d6. ; Williams, J. W., & Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5(9), 475-482. https://doi.org/10.1890/070037. ; Williamson, G. J., Prior, L. D., Jolly, W. M., Cochrane, M. A., Murphy, B. P., & Bowman, D. M. J. S. (2016). Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: The Australian case. Environmental Research Letters, 11(3), 035003. https://doi.org/10.1088/1748-9326/11/3/035003. ; Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., … Liu, X. (2019). The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model Development, 12(4), 1573-1600. https://doi.org/10.5194/gmd-12-1573-2019. ; Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C., & Scheffer, M. (2020). Future of the human climate niche. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11350-11355. https://doi.org/10.1073/pnas.1910114117. ; Zubkova, M., Boschetti, L., Abatzoglou, J. T., & Giglio, L. (2022). Fire regions as environmental niches: A new paradigm to define potential fire regimes in Africa and Australia. Journal of Geophysical Research: Biogeosciences, 127(8), e2021JG006694. https://doi.org/10.1029/2021JG006694. ; Zylstra, P., Wardell-Johnson, G., Falster, D., Howe, M., McQuoid, N., & Neville, S. (2023). Mechanisms by which growth and succession limit the impact of fire in a south-western Australian forested ecosystem. Functional Ecology, 37(5), 1350-1365. https://doi.org/10.1111/1365-2435.14305. ; Zylstra, P. J., Bradshaw, S. D., & Lindenmayer, D. B. (2022). Self-thinning forest understoreys reduce wildfire risk, even in a warming climate. Environmental Research Letters, 17(4), 044022. https://doi.org/10.1088/1748-9326/ac5c10.
  • Grant Information: DP220100795 Australian Research Council; FL220100099 Australian Research Council
  • Contributed Indexing: Keywords: climate change; fire regime shift; novel ecosystems; novel fire regimes; pyromes; pyroregions
  • Entry Date(s): Date Created: 20240126 Date Completed: 20240129 Latest Revision: 20240129
  • Update Code: 20240129

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -