Zum Hauptinhalt springen

Using warming tolerances to predict understory plant responses to climate change.

Wei, L ; Sanczuk, P ; et al.
In: Global change biology, Jg. 30 (2024), Heft 1, S. e17064
Online academicJournal

Titel:
Using warming tolerances to predict understory plant responses to climate change.
Autor/in / Beteiligte Person: Wei, L ; Sanczuk, P ; De Pauw, K ; Caron, MM ; Selvi, F ; Hedwall, PO ; Brunet, J ; Cousins, SAO ; Plue, J ; Spicher, F ; Gasperini, C ; Iacopetti, G ; Orczewska, A ; Uria-Diez, J ; Lenoir, J ; Vangansbeke, P ; De Frenne, P
Link:
Zeitschrift: Global change biology, Jg. 30 (2024), Heft 1, S. e17064
Veröffentlichung: <Jan. 2013-> : Oxford : Blackwell Pub. ; <i>Original Publication</i>: Oxford, UK : Blackwell Science, 1995-, 2024
Medientyp: academicJournal
ISSN: 1365-2486 (electronic)
DOI: 10.1111/gcb.17064
Schlagwort:
  • Ecosystem
  • Europe
  • Flowers
  • Temperature
  • Plants
  • Climate Change
  • Forests
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Glob Chang Biol] 2024 Jan; Vol. 30 (1), pp. e17064.
  • MeSH Terms: Climate Change* ; Forests* ; Ecosystem ; Europe ; Flowers ; Temperature ; Plants
  • References: Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6(8), art129. https://doi.org/10.1890/ES15-00203.1. ; Angert, A. L., Sheth, S. N., & Paul, J. R. (2011). Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Integrative and Comparative Biology, 51(5), 733-750. https://doi.org/10.1093/icb/icr048. ; Barbati, A., Marchetti, M., Chirici, G., & Corona, P. (2014). European forest types and forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation. Forest Ecology and Management, 321, 145-157. https://doi.org/10.1016/j.foreco.2013.07.004. ; Beauregard, F., & Blois, S. (2016). Rapid latitudinal range expansion at cold limits unlikely for temperate understory forest plants. Ecosphere, 7(11), e01549. https://doi.org/10.1002/ecs2.1549. ; Benavides, R., Escudero, A., Coll, L., Ferrandis, P., Gouriveau, F., Hódar, J. A., Ogaya, R., Rabasa, S. G., Granda, E., Santamaría, B. P., Martínez-Vilalta, J., Zamora, R., Espelta, J. M., Peñuelas, J., & Valladares, F. (2015). Survival vs. growth trade-off in early recruitment challenges global warming impacts on Mediterranean mountain trees. Perspectives in Plant Ecology, Evolution and Systematics, 17(5), 369-378. https://doi.org/10.1016/j.ppees.2015.06.004. ; Brown, J. H. (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124(2), 255-279. http://www.jstor.org/stable/2461494. ; Buonaiuto, D. M., & Wolkovich, E. M. (2021). Differences between flower and leaf phenological responses to environmental variation drive shifts in spring phenological sequences of temperate woody plants. Journal of Ecology, 109(8), 2922-2933. https://doi.org/10.1111/1365-2745.13708. ; Cailleret, M., Jansen, S., Robert, E. M. R., Desoto, L., Aakala, T., Antos, J. A., Beikircher, B., Bigler, C., Bugmann, H., Caccianiga, M., Čada, V., Camarero, J. J., Cherubini, P., Cochard, H., Coyea, M. R., Čufar, K., Das, A. J., Davi, H., Delzon, S., … Martínez-Vilalta, J. (2017). A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 23(4), 1675-1690. https://doi.org/10.1111/gcb.13535. ; Carnicer, J., Vives-Ingla, M., Blanquer, L., Méndez-Camps, X., Rosell, C., Sabaté, S., Gutiérrez, E., Sauras, T., Peñuelas, J., & Barbeta, A. (2021). Forest resilience to global warming is strongly modulated by local-scale topographic, microclimatic and biotic conditions. Journal of Ecology, 109(9), 3322-3339. https://doi.org/10.1111/1365-2745.13752. ; Chevalier, M., Broennimann, O., & Guisan, A. (2021). Using a robust multi-settings inference framework on published datasets still reveals limited support for the abundant centre hypothesis: More testing needed on other datasets. Global Ecology and Biogeography, 30(11), 2211-2228. https://doi.org/10.1111/geb.13376. ; Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S., & Hoffmann, A. A. (2021). How useful are thermal vulnerability indices? Trends in Ecology & Evolution, 36(11), 1000-1010. https://doi.org/10.1016/j.tree.2021.07.001. ; Coppi, A., Lazzaro, L., & Selvi, F. (2022). Plant mortality on ultramafic soils after an extreme heat and drought event in the Mediterranean area. Plant and Soil, 471, 123-139. https://doi.org/10.1007/s11104-021-05179-2. ; Cuesta, F., Tovar, C., Llambí, L. D., Gosling, W. D., Halloy, S., Carilla, J., Muriel, P., Meneses, R. I., Beck, S., Ulloa Ulloa, C., Yager, K., Aguirre, N., Viñas, P., Jácome, J., Suárez-Duque, D., Buytaert, W., & Pauli, H. (2019). Thermal niche traits of high alpine plant species and communities across the tropical Andes and their vulnerability to global warming. Journal of Biogeography, 47(2), 408-420. https://doi.org/10.1111/jbi.13759. ; Dahlberg, C. J., Ehrlén, J., & Hylander, K. (2014). Performance of forest bryophytes with different geographical distributions transplanted across a topographically heterogeneous landscape. PLoS One, 9(11), e112943. https://doi.org/10.1371/journal.pone.0112943. ; Dallas, T., Decker, R. R., & Hastings, A. (2017). Species are not most abundant in the centre of their geographic range or climatic niche. Ecology Letters, 20(12), 1526-1533. https://doi.org/10.1111/ele.12860. ; De Frenne, P., Baeten, L., Graae, B. J., Brunet, J., Wulf, M., Orczewska, A., Kolb, A., Jansen, I., Jamoneau, A., Jacquemyn, H., Hermy, M., Diekmann, M., De Schrijver, A., De Sanctis, M., Decocq, G., Cousins, S. A. O., & Verheyen, K. (2011). Interregional variation in the floristic recovery of post-agricultural forests. Journal of Ecology, 99, 600-609. https://doi.org/10.1111/j.1365-2745.2010.01768.x. ; De Frenne, P., Brunet, J., Shevtsova, A., Kolb, A., Graae, B. J., Chabrerie, O., Cousins, S. A., Decocq, G., De Schrijver, A., Diekmann, M., Gruwez, R., Heinken, T., Hermy, M., Nilsson, C., Stanton, S., Tack, W., Willaert, J., & Verheyen, K. (2011). Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Global Change Biology, 17(10), 3240-3253. https://doi.org/10.1111/j.1365-2486.2011.02449.x. ; De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., … Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11), 2279-2297. https://doi.org/10.1111/gcb.15569. ; De Frenne, P., Rodríguez-Sánchez, F., Coomes, D. A., Baeten, L., Verstraeten, G., Vellen, M., Bernhardt-Römermann, M., Brown, C. D., Brunet, J., Cornelis, J., Decocq, G. M., Dierschke, H., Eriksson, O., Gilliam, F. S., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Jenkins, M. A., … Verheyen, K. (2013). Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18561-18565. https://doi.org/10.1073/PNAS.1311190110. ; De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5), 744-749. https://doi.org/10.1038/s41559-019-0842-1. ; De Lombaerde, E., Vangansbeke, P., Lenoir, J., Van Meerbeek, K., Lembrechts, J., Rodríguez-Sánchez, F., Luoto, M., Scheffers, B., Haesen, S., Aalto, J., Christiansen, D. M., De Pauw, K., Depauw, L., Govaert, S., Greiser, C., Hampe, A., Hylander, K., Klinges, D., Koelemeijer, I., … De Frenne, P. (2022). Maintaining forest cover to enhance temperature buffering under future climate change. Science of the Total Environment, 810, 151338. https://doi.org/10.1016/j.scitotenv.2021.151338. ; De Pauw, K., Sanczuk, P., Meeussen, C., Depauw, L., De Lombaerde, E., Govaert, S., Vanneste, T., Brunet, J., Cousins, S. A. O., Gasperini, C., Hedwall, P.-O., Iacopetti, G., Lenoir, J., Plue, J., Selvi, F., Spicher, F., Uria-Diez, J., Verheyen, K., Vangansbeke, P., & De Frenne, P. (2022). Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist., 233, 219-235. https://doi.org/10.1111/nph.17803. ; Depauw, L., Hu, R., Dhungana, K. S., Govaert, S., Meeussen, C., Vangansbeke, P., Strimbeck, R., Graae, B. J., & De Frenne, P. (2022). Functional trait variation of Anemone nemorosa along macro- and microclimatic gradients close to the northern range edge. Nordic Journal of Botany, 2022(4), e03471. https://doi.org/10.1111/njb.03471. ; Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668-6672. https://doi.org/10.1073/pnas.0709472105. ; Diamond, S. E., Sorger, D. M., Hulcr, J., Pelini, S. L., Toro, I. D., Hirsch, C., Oberg, E., & Dunn, R. R. (2012). Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology, 18, 448-456. https://doi.org/10.1111/j.1365-2486.2011.02542.x. ; Dittmar, C., Zech, W., & Elling, W. (2003). Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe-A dendroecological study. Forest Ecology and Management, 173(1-3), 63-78. https://doi.org/10.1016/S0378-1127(01)00816-7. ; Eaton, E., Caudullo, G., Oliveira, S., & de Rigo, D. (2016). Quercus robur and Quercus petraea in Europe: Distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, & A. Mauri (Eds.), European atlas of forest tree species (pp. 160-163). Publication Office of the European Union. ; Fauset, S., Freitas, H. C., Galbraith, D. R., Sullivan, M. J. P., Aidar, M. P. M., Joly, C. A., Phillips, O. L., Vieira, S. A., & Gloor, M. U. (2018). Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment, 41(7), 1618-1631. https://doi.org/10.1111/pce.13208. ; Feeley, K., Martinez-Villa, J., Perez, T., Silva Duque, A., Triviño Gonzalez, D., & Duque, A. (2020). The thermal tolerances, distributions, and performances of tropical montane tree species. Frontiers in Forests and Global Change, 3, 25. https://doi.org/10.3389/ffgc.2020.00025. ; Fick, S. E., & Hijmans, R. J. (2017). WORLDCLIM 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086. ; Foster, J. R., & D'Amato, A. W. (2015). Montane forest ecotones moved downslope in northeastern USA in spite of warming between 1984 and 2011. Global Change Biology, 21(12), 4497-4507. https://doi.org/10.1111/gcb.13046. ; Franklin, J., Serra-Diaz, J. M., Syphard, A. D., & Regan, H. M. (2016). Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences of the United States of America, 113(14), 3725-3734. https://doi.org/10.1073/pnas.1519911113. ; Franklin, J. F., Shugart, H. H., & Harmon, M. E. (1987). Tree death as an ecological process. Bioscience, 37(8), 550-556. https://doi.org/10.2307/1310665. ; Frazier, M. R., Huey, R. B., & Berrigan, D. (2006). Thermodynamics constrains the evolution of insect population growth rates: “Warmer is better”. The American Naturalist, 168(4), 512-520. https://doi.org/10.1086/506977. ; Gasperini, C., Carrari, E., Govaert, S., Meeussen, C., De Pauw, K., Plue, J., Sanczuk, P., Vanneste, T., Vangansbeke, P., Iacopetti, G., & De Frenne, P. (2023). Trait variation in juvenile plants from the soil seed bank of temperate forests in relation to macro-and microclimate. Applied Vegetation Science, 26(3), e12739. ; Gazol, A., Camarero, J. J., Gutiérrez, E., Popa, I., Andreu-Hayles, L., Motta, R., Nola, P., Ribas, M., Sangüesa-Barreda, G., Urbinati, C., & Carrer, M. (2015). Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography, 42(6), 1150-1162. https://doi.org/10.1111/jbi.12512. ; Graae, B. J., De Frenne, P., Kolb, A., Brunet, J., Chabrerie, O., Verheyen, K., Pepin, N., Heinken, T., Zobel, M., Shevtsova, A., Nijs, I., & Milbau, A. (2012). On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos, 121(1), 3-19. https://doi.org/10.1111/j.1600-0706.2011.19694.x. ; Granda, E., Alla, A. Q., Laskurain, N. A., Loidi, J., Sánchez-Lorenzo, A., & Camarero, J. J. (2018). Coexisting oak species, including rear-edge populations, buffer climate stress through xylem adjustments. Tree Physiology, 38(2), 159-172. https://doi.org/10.1093/treephys/tpx157. ; Greiser, C., Ehrlén, J., Luoto, M., Meineri, E., Merinero, S., Willman, B., & Hylander, K. (2021). Warm range margin of boreal bryophytes and lichens not directly limited by temperatures. Journal of Ecology, 109(10), 3724-3736. https://doi.org/10.1111/1365-2745.13750. ; Greiser, C., Ehrlén, J., Meineri, E., & Hylander, K. (2019). Hiding from the climate: Characterizing microrefugia for boreal forest understory species. Global Change Biology, 26(2), 471-483. https://doi.org/10.1111/gcb.14874. ; Hacket-Pain, A. J., & Friend, A. D. (2017). Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica L., despite regionally warmer and drier conditions. Dendrochronologia, 44, 22-30. https://doi.org/10.1016/j.dendro.2017.02.005. ; Haesen, S., Lembrechts, J. J., De Frenne, P., Lenoir, J., Aalto, J., Ashcroft, M. B., Kopecký, M., Luoto, M., Maclean, I., Nijs, I., Niittynen, P., Hoogen, J., Arriga, N., Brůna, J., Buchmann, N., Čiliak, M., Collalti, A., De Lombaerde, E., Descombes, P., … Van Meerbeek, K. (2021). ForestTemp-Sub-canopy microclimate temperatures of European forests. Global Change Biology, 27(23), 6307-6319. https://doi.org/10.1111/gcb.15892. ; Haesen, S., Lenoir, J., Gril, E., De Frenne, P., Lembrechts, J. J., Kopecký, M., Macek, M., Man, M., Wild, J., & Van Meerbeek, K. (2023). Microclimate reveals the true thermal niche of forest plant species. Ecology Letters, 00, 1-13. https://doi.org/10.1111/ele.14312. ; Harsch, M. A., Hulme, P. E., McGlone, M. S., & Duncan, R. P. (2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12(10), 1040-1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x. ; Hengeveld, R. (1992). Dynamic biogeography. Cambridge University Press. ; Hultén, E., & Fries, M. (1986). Atlas of North European vascular plants: North of the Tropic of Cancer. Koeltz Scientific. ; Inouye, D. W. (2008). Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89(2), 353-362. https://doi.org/10.1890/06-2128.1. ; IPCC. (2001). Climate change 2001: The scientific basis. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ; Jump, A. S., Ruiz-Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham, R., Martínez-Vilalta, J., & Lloret, F. (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Global Change Biology, 23(9), 3742-3757. https://doi.org/10.1111/gcb.13636. ; Kearney, M. R., Porter, W. P., & Huey, R. B. (2021). Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods in Ecology & Evolution, 12, 458-467. https://doi.org/10.1111/2041-210X.13528. ; Kelly, A. E., & Goulden, M. L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11823-11826. https://doi.org/10.1073/pnas.0802891105. ; Kingsolver, J. G., Diamond, S. E., & Buckley, L. B. (2013). Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Functinal Ecology, 27, 1415-1423. https://doi.org/10.1111/1365-2435.12145. ; Kueppers, L. M., Conlisk, E., Castanha, C., Moyes, A. B., Germino, M. J., Valpine, P., Torn, M. S., & Mitton, J. B. (2017). Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Global Change Biology, 23(6), 2383-2395. https://doi.org/10.1111/gcb.13561. ; Larcher, W. (2003). Physiological plant ecology (4th ed.). Springer-Verlag. ; Leigh, A., Sevanto, S., Close, J. D., & Nicotra, A. B. (2017). The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant, Cell & Environment, 40(2), 237-248. https://doi.org/10.1111/pce.12857. ; Lenoir, J., Gégout, J. C., Dupouey, J. L., Bert, D., & Svenning, J. C. (2010). Forest plant community changes during 1989-2007 in response to climate warming in the Jura Mountains (France and Switzerland). Journal of Vegetation Science, 21, 949-964. https://doi.org/10.1111/j.1654-1103.2010.01201.x. ; Lenoir, J., & Svenning, J.-C. (2015). Climate-related range shifts-A global multidimensional synthesis and new research directions. Ecography, 38(1), 15-28. https://doi.org/10.1111/ecog.00967. ; Li, D., Yuan, J., & Kopp, R. E. (2020). Escalating global exposure to compound heat-humidity extremes with warming. Environmental Research Letters, 15(6), 064003. https://doi.org/10.1088/1748-9326/ab7d04. ; Maclean, I. M. D., Duffy, J. P., Haesen, S., Govaert, S., De Frenne, P., Vanneste, T., Lenoir, J., Lembrechts, J. J., Rhodes, M. W., & Van Meerbeek, K. (2021). On the measurement of microclimate. Methods in Ecology and Evolution, 12(8), 1397-1410. https://doi.org/10.1111/2041-210X.13627. ; Manthey, J., Campbell, L., Saupe, E., Soberón, J., Hensz, C., Myers, C., Owens, H., Ingenloff, K., Peterson, A., Barve, N., Lira-Noriega, A., & Barve, V. (2015). A test of niche centrality as a determinant of population trends and conservation status in threatened and endangered North American birds. Endangered Species Research, 26(3), 201-208. https://doi.org/10.3354/esr00646. ; Marchin, R. M., Backes, D., Ossola, A., Leishman, M. R., Tjoelker, M. G., & Ellsworth, D. S. (2022). Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. Global Change Biology, 28, 1133-1146. https://doi.org/10.1111/gcb.15976. ; Martínez-Gutiérrez, P. G., Martínez-Meyer, E., Palomares, F., & Fernández, N. (2018). Niche centrality and human influence predict rangewide variation in population abundance of a widespread mammal: The collared peccary (Pecari tajacu). Diversity and Distributions, 24(1), 103-115. https://doi.org/10.1111/ddi.12662. ; Martínez-Meyer, E., Díaz-Porras, D., Peterson, A. T., & Yáñez-Arenas, C. (2013). Ecological niche structure and rangewide abundance patterns of species. Biology Letters, 9, 20120637. https://doi.org/10.1098/rsbl.2012.0637. ; McDowell, N., & Allen, C. (2015). Darcy's law predicts widespread forest mortality under climate warming. Nature Climate Change, 5, 669-672. https://doi.org/10.1038/nclimate2641. ; McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x. ; Meeussen, C., Govaert, S., Vanneste, T., Bollmann, K., Brunet, J., Calders, K., Cousins, S. A. O., de Pauw, K., Diekmann, M., Gasperini, C., Hedwall, P. O., Hylander, K., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Sanczuk, P., … de Frenne, P. (2021). Microclimatic edge-to-interior gradients of European deciduous forests. Gricultural and Forest Meteorology, 311, 108699. https://doi.org/10.1016/j.agrformet.2021.108699. ; Mellert, K. H., Ewald, J., Hornstein, D., Dorado-Liñán, I., Jantsch, M., Taeger, S., Zang, C., Menzel, A., & Kölling, C. (2016). Climatic marginality: A new metric for the susceptibility of tree species to warming exemplified by Fagus sylvatica (L.) and Ellenberg's quotient. European Journal of Forest Research, 135(1), 137-152. https://doi.org/10.1007/s10342-015-0924-9. ; Meusel, H., & Jäger, E. J. (1992). Vergleichende Chorologie der zentral-europäischen Flora, Karten (Vol. III). VEB Gustav Fischer. ; Michaletz, S. T., Weiser, M. D., Zhou, J., Kaspari, M., Helliker, B. R., & Enquist, B. J. (2015). Plant thermoregulation: Energetics, traits-environment interactions, and carbon economics. Trends in Ecology & Evolution, 30, 714-724. https://doi.org/10.1016/j.tree.2015.09.0. ; Mölder, A., Meyer, P., & Nagel, R. V. (2019). Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. petraea) forests: An overview. Forest Ecology and Management, 437, 324-339. https://doi.org/10.1016/j.foreco.2019.01.006. ; Morin, X., & Chuine, I. (2006). Niche breadth, competitive strength and range size of tree species: A trade-off based framework to understand species distribution. Ecology Letters, 9(2), 185-195. https://doi.org/10.1111/j.1461-0248.2005.00864.x. ; Moritz, C., & Agudo, R. (2013). The future of species under climate change: Resilience or decline? Science, 341(6145), 504-508. https://doi.org/10.1126/science.1237190. ; Nievola, C. C., Carvalho, C. P., Carvalho, V., & Rodrigues, E. (2017). Rapid responses of plants to temperature changes. Temperature, 4(4), 371-405. https://doi.org/10.1080/23328940.2017.1377812. ; Normand, S., Treier, U. A., Randin, C., Vittoz, P., Guisan, A., & Svenning, J.-C. (2009). Importance of abiotic stress as a range-limit determinant for European plants: Insights from species responses to climatic gradients. Global Ecology and Biogeography, 18(4), 437-449. https://doi.org/10.1111/j.1466-8238.2009.00451.x. ; Osorio-Olvera, L., Yañez-Arenas, C., Martínez-Meyer, E., & Peterson, A. T. (2020). Relationships between population densities and niche-centroid distances in North American birds. Ecology Letters, 23(3), 555-564. https://doi.org/10.1111/ele.13453. ; O'sullivan, O. S., Heskel, M. A., Reich, P. B., Tjoelker, M. G., Weerasinghe, L. K., Penillard, A., Zhu, L., Egerton, J. J. G., Bloomfield, K. J., Creek, D., Bahar, N. H. A., Griffin, K. L., Hurry, V., Meir, P., Turnbull, M. H., & Atkin, O. K. (2017). Thermal limits of leaf metabolism across biomes. Global Change Biology, 23(1), 209-223. https://doi.org/10.1111/gcb.13477. ; Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100. ; Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: Complexities and surprises. Annals of Botany, 116(6), 849-864. https://doi.org/10.1093/aob/mcv169. ; Pearman, P. B., Randin, C. F., Broennimann, O., Vittoz, P., van der Knaap, W. O., Engler, R., Le Lay, G., Zimmermann, N. E., & Guisan, A. (2008). Prediction of plant species distributions across six millennia. Ecology Letters, 11(4), 357-369. https://doi.org/10.1111/j.1461-0248.2007.01150.x. ; Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. https://doi.org/10.1071/BT12225. ; Peterson, A. T. (2011). Ecological niche conservatism: A time-structured review of evidence. Journal of Biogeography, 38, 817-827. https://doi.org/10.1111/j.1365-2699.2010.02456.x. ; Pincebourde, S., & Casas, J. (2019). Narrow safety margin in the phyllosphere during thermal extremes. Proceedings of the National Academy of Sciences of the United States of America, 116, 5588-5596. https://doi.org/10.1073/pnas.1815828116. ; Potter, K. A., Arthur Woods, H., & Pincebourde, S. (2013). Microclimatic challenges in global change biology. Global Change Biology, 19(10), 2932-2939. https://doi.org/10.1111/gcb.12257. ; Salzer, M. W., Hughes, M. K., Bunn, A. G., & Kipfmueller, K. F. (2009). Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20348-20353. https://doi.org/10.1073/pnas.0903029106. ; Sanczuk, P., De Lombaerde, E., Haesen, S., Van Meerbeek, K., Van der Veken, B., Hermy, M., Verheyen, K., Vangansbeke, P., & De Frenne, P. (2022). Species distribution models and a 60-year-old transplant experiment reveal inhibited forest plant range shifts under climate change. Journal of Biogeography, 49(3), 537-550. https://doi.org/10.1111/jbi.14325. ; Santini, L., Pironon, S., Maiorano, L., & Thuiller, W. (2019). Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography, 42(4), 696-705. https://doi.org/10.1111/ecog.04027. ; Schenk, H. J., & Jackson, R. B. (2002). The global biogeography of roots. Ecological Monographs, 72, 311-328. https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2. ; Sexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40(1), 415-436. https://doi.org/10.1146/annurev.ecolsys.110308.120317. ; Shay, J. E., Pennington, L. K., Mandussi Montiel-Molina, J. A., Toews, D. J., Hendrickson, B. T., & Sexton, J. P. (2021). Rules of plant species ranges: Applications for conservation strategies. Frontiers in Ecology and Evolution, 9, 700962. https://doi.org/10.3389/fevo.2021.700962. ; Slot, M., Cala, D., Aranda, J., Virgo, A., Michaletz, S. T., & Winter, K. (2021). Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant, Cell & Environment, 44(7), 2414-2427. https://doi.org/10.1111/pce.14060. ; Soberón, J., & Arroyo-Peña, B. (2017). Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLoS One, 12(4), e0175138. https://doi.org/10.1371/journal.pone.0175138. ; Soudzilovskaia, N. A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., Brundrett, M. C., Gomes, S. I. F., Merckx, V., & Tedersoo, L. (2020). FungalRoot: Global online database of plant mycorrhizal associations. New Phytologist, 227(3), 955-966. https://doi.org/10.1111/nph.16569. ; Stahl, U., Reu, B., & Wirth, C. (2014). Predicting species' range limits from functional traits for the tree flora of North America. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13739-13744. https://doi.org/10.1073/pnas.1300673111. ; Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5610-5615. https://doi.org/10.1073/pnas.1316145111. ; Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571-573. https://doi.org/10.1126/science.aaa4984. ; Van Bogaert, R., Haneca, K., Hoogesteger, J., Jonasson, C., De Dapper, M., & Callaghan, T. V. (2011). A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. Journal of Biogeography, 38(5), 907-921. https://doi.org/10.1111/j.1365-2699.2010.02453.x. ; Vangansbeke, P., Máliš, F., Hédl, R., Chudomelová, M., Vild, O., Wulf, M., Jahn, U., Welk, E., Rodríguez-Sánchez, F., & De Frenne, P. (2021). ClimPlant: Realized climatic niches of vascular plants in European forest understoreys. Global Ecology and Biogeography, 30(6), 1183-1190. https://doi.org/10.1111/geb.13303. ; Vangansbeke, P., Sanczuk, P., Govaert, S., De Lombaerde, E., & De Frenne, P. (2022). Negative effects of winter and spring warming on the regeneration of forest spring geophytes. Plant Biology, 24(6), 950-959. https://doi.org/10.1111/plb.13443. ; Verheyen, K., Adriaenssens, S., Gruwez, R., Michalczyk, I. M., Ward, L. K., Rosseel, Y., Van den Broeck, A., & García, D. (2009). Juniperus communis: Victim of the combined action of climate warming and nitrogen deposition? Plant Biology, 11(Suppl. 1), 49-59. https://doi.org/10.1111/j.1438-8677.2009.00214.x. ; Verheyen, K., Honnay, O., Motzkin, G., Hermy, M., & Foster, D. R. (2003). Response of forest plant species to land-use change: A life-history trait-based approach. Journal of Ecology, 91, 563-577. ; von Arx, G., Dobbertin, M., & Rebetez, M. (2012). Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agricultural and Forest Meteorology, 166-167, 144-155. https://doi.org/10.1016/j.agrformet.2012.07.018. ; Warren, R., Price, J., VanDerWal, J., Cornelius, S., & Sohl, H. (2018). The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas. Climatic Change, 147, 395-409. https://doi.org/10.1007/s10584-018-2158-6. ; Webb, T. J., Lines, A., & Howarth, L. M. (2020). Occupancy-derived thermal affinities reflect known physiological thermal limits of marine species. Ecology and Evolution, 10, 7050-7061. https://doi.org/10.1002/ece3.6407. ; Wei, L., Sanczuk, P., De Pauw, K., Mercedes Caron, M., Selvi, F., Hedwall, P.-O., Brunet, J., Cousins, S., Plue, J., Spicher, F., Gasperini, C., Iacopetti, G., Orczewska, A., Uria-Diez, J., Lenoir, J., Vangansbeke, P., & De Frenne, P. (2023). Data from: Predicting forest plant responses to climate change based on species' thermal safety margins relative to their warm limits. Figshare. https://doi.org/10.6084/m9.figshare.23055236. ; Wild, J., Kopecký, M., Macek, M., Šanda, M., Jankovec, J., & Haase, T. (2019). Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agricultural and Forest Meteorology, 268, 40-47. https://doi.org/10.1016/j.agrformet.2018.12.018. ; Wood, S. N. (2017). Generalized additive models: An introduction with R. CRC Press. ; Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S. L., Wulf, M., Kirby, K. J., Brunet, J., Kopecký, M., Máliš, F., & Schmidt, W. (2019). Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Global Ecology and Biogeography, 28(12), 1774-1786. https://doi.org/10.1111/geb.12991. ; Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., … Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. Science, 368(6492), 772-775. https://doi.org/10.1126/science.aba6880.
  • Grant Information: FORMICA 757833 International ERC_ European Research Council
  • Contributed Indexing: Keywords: climate change; cross-continental transplant experiment; forest ecosystems; microclimate; species traits; thermal niche; understory species; warming tolerance
  • Entry Date(s): Date Created: 20240126 Date Completed: 20240129 Latest Revision: 20240129
  • Update Code: 20240129

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -