Zum Hauptinhalt springen

Enhanced translocation of TRIM32 to mitochondria sensitizes dopaminergic neuronal cells to apoptosis during stress conditions in Parkinson's disease.

Goyani, S ; Shinde, A ; et al.
In: The FEBS journal, Jg. 291 (2024-06-01), Heft 12, S. 2636-2655
Online academicJournal

Titel:
Enhanced translocation of TRIM32 to mitochondria sensitizes dopaminergic neuronal cells to apoptosis during stress conditions in Parkinson's disease.
Autor/in / Beteiligte Person: Goyani, S ; Shinde, A ; Shukla, S ; Saranga, MV ; Currim, F ; Mane, M ; Singh, J ; Roy, M ; Gohel, D ; Chandak, N ; Vasiyani, H ; Singh, R
Link:
Zeitschrift: The FEBS journal, Jg. 291 (2024-06-01), Heft 12, S. 2636-2655
Veröffentlichung: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-, 2024
Medientyp: academicJournal
ISSN: 1742-4658 (electronic)
DOI: 10.1111/febs.17065
Schlagwort:
  • Humans
  • Transcription Factors metabolism
  • Transcription Factors genetics
  • X-Linked Inhibitor of Apoptosis Protein metabolism
  • X-Linked Inhibitor of Apoptosis Protein genetics
  • Rotenone pharmacology
  • Protein Transport
  • Electron Transport Complex I metabolism
  • Electron Transport Complex I genetics
  • Cell Line, Tumor
  • Oxidopamine pharmacology
  • Autophagy
  • Adenosine Triphosphate metabolism
  • Cell Survival genetics
  • Ubiquitin-Protein Ligases metabolism
  • Ubiquitin-Protein Ligases genetics
  • Mitochondria metabolism
  • Mitochondria pathology
  • Mitochondria genetics
  • Apoptosis
  • Dopaminergic Neurons metabolism
  • Dopaminergic Neurons pathology
  • Parkinson Disease metabolism
  • Parkinson Disease genetics
  • Parkinson Disease pathology
  • Tripartite Motif Proteins metabolism
  • Tripartite Motif Proteins genetics
  • Oxidative Stress
  • Reactive Oxygen Species metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [FEBS J] 2024 Jun; Vol. 291 (12), pp. 2636-2655. <i>Date of Electronic Publication: </i>2024 Feb 05.
  • MeSH Terms: Ubiquitin-Protein Ligases* / metabolism ; Ubiquitin-Protein Ligases* / genetics ; Mitochondria* / metabolism ; Mitochondria* / pathology ; Mitochondria* / genetics ; Apoptosis* ; Dopaminergic Neurons* / metabolism ; Dopaminergic Neurons* / pathology ; Parkinson Disease* / metabolism ; Parkinson Disease* / genetics ; Parkinson Disease* / pathology ; Tripartite Motif Proteins* / metabolism ; Tripartite Motif Proteins* / genetics ; Oxidative Stress* ; Reactive Oxygen Species* / metabolism ; Humans ; Transcription Factors / metabolism ; Transcription Factors / genetics ; X-Linked Inhibitor of Apoptosis Protein / metabolism ; X-Linked Inhibitor of Apoptosis Protein / genetics ; Rotenone / pharmacology ; Protein Transport ; Electron Transport Complex I / metabolism ; Electron Transport Complex I / genetics ; Cell Line, Tumor ; Oxidopamine / pharmacology ; Autophagy ; Adenosine Triphosphate / metabolism ; Cell Survival / genetics
  • References: Moon HE & Paek SH (2015) Mitochondrial dysfunction in Parkinson's disease. Exp Neurobiol 24, 103–116. ; Deng H, Le WD, Shahed J, Die WJ & Jankovic J (2008) Mutation analysis of the and PINK1 genes in American Caucasian early‐onset Parkinson disease families. Neurosci Lett 430, 18–22. ; Pu JL, Gao T, Zheng R, Fang Y, Ruan Y, Jin CY, Shen T, Tian J & Zhang BR (2020) Parkin mutation decreases neurite complexity and maturation in neurons derived from human fibroblasts. Brain Res Bull 159, 9–15. ; Siuda J, Jasinska‐Myga B, Boczarska‐Jedynak M, Opala G, Fiesel FC, Moussaud‐Lamodière EL, Scarffe LA, Dawson VL, Ross OA, Springer W et al. (2014) Early‐onset Parkinson's disease due to p.Q456X mutation – clinical and functional study. Parkinsonism Relat Disord 20, 1274–1278. ; Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RLJ, Hess S & Chan DC (2011) Broad activation of the ubiquitin‐proteasome system by parkin is critical for mitophagy. Hum Mol Genet 20, 1726–1737. ; Cunningham CN, Baughman JM, Phu L, Tea JS, Yu C, Coons M, Kirkpatrick DS, Bingol B & Corn JE (2015) USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 17, 160–169. ; Richard TJC, Herzog LK, Vornberger J, Rahmanto AS, Sangfelt O, Salomons FA & Dantuma NP (2020) K63‐linked ubiquitylation induces global sequestration of mitochondria. Sci Rep 10, 22334. ; Lavie J, De Belvalet H, Sonon S, Ion AM, Dumon E, Melser S, Lacombe D, Dupuy JW, Lalou C & Bénard G (2018) Ubiquitin‐dependent degradation of mitochondrial proteins regulates energy metabolism. Cell Rep 23, 2852–2863. ; Sulkshane P, Duek I, Ram J, Thakur A, Reis N, Ziv T & Glickman MH (2020) Inhibition of proteasome reveals basal mitochondrial ubiquitination. J Proteomics 229, 103949. ; Zheng N & Shabek N (2017) Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86, 129–157. ; Li ZY, Chen SY, Jhong JH, Pang YX, Huang KY, Li SF & Lee TY (2021) UbiNet 2.0: a verified, classified, annotated and updated database of E3 ubiquitin ligase‐substrate interactions. Database (Oxford) 2021, baab010. ; Yang Q, Zhao JY, Chen D & Wang Y (2021) E3 ubiquitin ligases: styles, structures and functions. Mol Biomed 2, 23. ; Tomar D & Singh R (2015) TRIM family proteins: emerging class of RING E3 ligases as regulator of NF‐κB pathway. Biol Cell 107, 22–40. ; Goyani S, Roy M & Singh R (2021) TRIM‐NHL as RNA binding ubiquitin E3 ligase (RBUL): implication in development and disease pathogenesis. Biochim Biophys Acta 1867, 166066. ; Rajsbaum R, García‐Sastre A & Versteeg GA (2014) TRIMmunity: the roles of the TRIM E3‐ubiquitin ligase family in innate antiviral immunity. J Mol Biol 426, 1265–1284. ; Yang D, Li NL, Wei D, Liu B, Guo F, Elbahesh H, Zhang Y, Zhou Z, Chen GY & Li K (2019) The E3 ligase TRIM56 is a host restriction factor of zika virus and depends on its RNA‐binding activity but not miRNA regulation, for antiviral function. PLoS Negl Trop Dis 13, e0007537. ; Mohammadi A, Abbasi MSP, Khorrami S, Khodamoradi S, Goldar ZM & Ebrahimzadeh F (2022) The TRIM proteins in cancer: from expression to emerging regulatory mechanisms. Clin Transl Oncol 24, 460–470. ; Di Rienzo M, Romagnoli A, Antonioli M, Piacentini M & Fimia GM (2020) TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ 27, 887–902. ; Roy M & Singh R (2021) TRIMs: selective recruitment at different steps of the NF‐κB pathway‐determinant of activation or resolution of inflammation. Cell Mol Life Sci 78, 6069–6086. ; Tomar D, Prajapati P, Lavie J, Singh K, Lakshmi S, Bhatelia K, Roy M, Singh R, Bénard G & Singh R (2015) TRIM4; a novel mitochondrial interacting RING E3 ligase, sensitizes the cells to hydrogen peroxide (HO) induced cell death. Free Radic Biol Med 89, 1036–1048. ; Nicklas S, Hillje AL, Okawa S, Rudolph IM, Collmann FM, van Wuellen T, del Sol A & Schwamborn JC (2019) A complex of the ubiquitin ligase TRIM32 and the deubiquitinase USP7 balances the level of c‐Myc ubiquitination and thereby determines neural stem cell fate specification. Cell Death Differ 26, 728–740. ; Hillje AL, Pavlou MAS, Beckmann E, Worlitzer MMA, Bahnassawy L, Lewejohann L, Palm T & Schwamborn JC (2013) TRIM32‐dependent transcription in adult neural progenitor cells regulates neuronal differentiation. Cell Death Dis 4, e976. ; Jiang HY, Yu Y, Liu SC, Zhu MQ, Dong X, Wu JY, Zhang Z, Zhang M & Zhang Y (2019) Proteomic study of a Parkinson's disease model of undifferentiated SH‐SY5Y cells induced by a proteasome inhibitor. Int J Med Sci 16, 84–92. ; Shukla S, Currim F, Singh J, Goyani S, Saranga MV, Shinde A, Mane M, Chandak N, Kishore S & Singh R (2023) Hsa‐miR‐320a mediated exosome release under PD stress conditions rescue mitochondrial ROS and cell death in the recipient neuronal and glial cells. Int J Biochem Cell Biol 162, 106439. ; Kovalevich J & Langford D (2013) Considerations for the use of SH‐SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078, 9–21. ; Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G & Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131–24145. ; Prajapati P, Gohel D, Shinde A, Roy M, Singh K & Singh R (2020) TRIM32 regulates mitochondrial mediated ROS levels and sensitizes the oxidative stress induced cell death. Cell Signal 76, 109777. ; Silva GM, Finley D & Vogel C (2015) K63 polyubiquitination is a new modulator of the oxidative stress response. Nat Struct Mol Biol 22, 116–123. ; Koliopoulos MG, Esposito D, Christodoulou E, Taylor IA & Rittinger K (2016) Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J 35, 1204–1218. ; Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S et al. (2001) The tripartite motif family identifies cell compartments. EMBO J 20, 2140–2151. ; Zhao R, Yu QY, Hou L, Dong XQ, Zhang H, Chen XL, Zhou ZH, Ma J, Huang SL & Chen L (2020) Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells. Int J Biochem Cell Biol 121, 105715. ; Zorov DB, Juhaszova M & Sollott SJ (2014) Mitochondrial reactive oxygen species (Ros) and Ros‐induced Ros release. Physiol Rev 94, 909–950. ; Mimaki M, Wang XN, McKenzie M, Thorburn DR & Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta 1817, 851–862. ; Chaudhary AK, Yadav N, Bhat TA, O'Malley J, Kumar S & Chandra D (2016) A potential role of X‐linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today 21, 38–47. ; Hamacher‐Brady A & Brady NR (2015) Bax/Bak‐dependent, Drp1‐independent targeting of X‐linked inhibitor of apoptosis protein (XIAP) into inner mitochondrial compartments counteracts Smac/DIABLO‐dependent effector caspase activation. J Biol Chem 290, 22005–22018. ; Maharjan S, Oku M, Tsuda M, Hoseki J & Sakai Y (2014) Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep 4, 5896. ; Offen D, Ziv I, Sternin H, Melamed E & Hochman A (1996) Prevention of dopamine‐induced cell death by thiol antioxidants: possible implications for treatment of Parkinson's disease. Exp Neurol 141, 32–39. ; van der Merwe C, van Dyk HC, Engelbrecht L, van der Westhuizen FH, Kinnear C, Loos B & Bardien S (2017) Curcumin rescues a PINK1 Knock down SH‐SY5Y cellular model of Parkinson's disease from mitochondrial dysfunction and cell death. Mol Neurobiol 54, 2752–2762. ; Hu HT & Li M (2016) Mitochondria‐targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons. Biochem Biophys Res Commun 478, 174–180. ; Ramalingam A, Budin SB, Fauzi NM, Ritchie RH & Zainalabidin S (2021) Targeting mitochondrial reactive oxygen species‐mediated oxidative stress attenuates nicotine‐induced cardiac remodeling and dysfunction. Sci Rep 11, 13845. ; Chen YJ, Hao Q, Wang JQ, Li JJ, Huang CH, Zhang Y, Wu XH, Lu H & Zhou X (2019) Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis 10, 737. ; Lassot I, Robbins I, Kristiansen M, Rahmeh R, Jaudon F, Magiera MM, Mora S, Vanhille L, Lipkin A, Pettmann B et al. (2010) Trim17, a novel E3 ubiquitin‐ligase, initiates neuronal apoptosis. Cell Death Differ 17, 1928–1941. ; Overå KS, Garcia‐Garcia J, Bhujabal Z, Jain A, Øvervatn A, Larsen KB, Deretic V, Johansen T, Lamark T & Sjøttem E (2019) TRIM32, but not its muscular dystrophy‐associated mutant, positively regulates and is targeted to autophagic degradation by p62/SQSTM1. J Cell Sci 132, jcs236596. ; Hu Z, Song Q, Ma H, Guo Y, Zhang T, Xie H & Luo X (2021) TRIM32 inhibits the proliferation and migration of pulmonary artery smooth muscle cells through the inactivation of PI3K/Akt pathway in pulmonary arterial hypertension. J Bioenerg Biomembr 53, 309–320. ; Wei L, Zhang JS, Ji SF, Xu H, Zhao ZH, Zhang L, Pang L, Zhang JF, Yang PB & Ma H (2019) Knockdown of TRIM32 protects hippocampal neurons from oxygen‐glucose deprivation‐induced injury. Neurochem Res 44, 2182–2189. ; Chen Z, Tian LF, Wang L, Ma XT, Lei FQ, Chen XH & Fu RG (2022) TRIM32 inhibition attenuates apoptosis, oxidative stress, and inflammatory injury in podocytes induced by high glucose by modulating the Akt/GSK‐3β/Nrf2 pathway. Inflammation 45, 992–1006. ; Tomar D, Singh R, Singh AK, Pandya CD & Singh R (2012) TRIM13 regulates ER stress induced autophagy and clonogenic ability of the cells. Biochim Biophys Acta 1823, 316–326. ; Roy M, Tomar D, Singh K, Lakshmi S, Prajapati P, Bhatelia K, Gohel D & Singh R (2018) TRIM8 regulated autophagy modulates the level of cleaved Caspase‐3 subunit to inhibit genotoxic stress induced cell death. Cell Signal 48, 1–12. ; Shimada T, Kudoh Y, Noguchi T, Kagi T, Suzuki M, Tsuchida M, Komatsu H, Takahashi M, Hirata Y & Matsuzawa A (2021) The E3 ubiquitin‐protein ligase RNF4 promotes TNF‐α‐induced cell death triggered by RIPK1. Int J Mol Sci 22, 5796. ; De S, Holvey‐Bates EG, Mahen K, Willard B & Stark GR (2021) The ubiquitin E3 ligase FBXO22 degrades PD‐L1 and sensitizes cancer cells to DNA damage. Proc Natl Acad Sci USA 118, e2112674118. ; Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, Choi SW, Peters R, Mandell M, Bruun JA et al. (2016) TRIMs and galectins globally cooperate and TRIM16 and Galectin‐3 Co‐direct autophagy in endomembrane damage homeostasis. Dev Cell 39, 13–27. ; Shang F & Taylor A (2011) Ubiquitin‐proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 51, 5–16. ; Sheng X, Xia Z, Yang H & Hu R (2023) The ubiquitin codes in cellular stress responses. Protein Cell pwad045. ; Simoes V, Cizubu BK, Harley L, Zhou Y, Pajak J, Snyder NA, Bouvette J, Borgnia MJ, Arya G, Bartesaghi A et al. (2022) Redox‐sensitive E2 Rad6 controls cellular response to oxidative stress via K63‐linked ubiquitination of ribosomes. Cell Rep 39, 110860. ; Roy M, Singh K, Shinde A, Singh J, Mane M, Bedekar S, Tailor Y, Gohel D, Vasiyani H, Currim F et al. (2022) TNF‐α‐induced E3 ligase, TRIM15 inhibits TNF‐α‐regulated NF‐κB pathway by promoting turnover of K63 linked ubiquitination of TAK1. Cell Signal 91, 110210. ; Bolam JP & Pissadaki EK (2012) Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord 27, 1478–1483. ; Spillane M, Ketschek A, Merianda TT, Twiss JL & Gallo G (2013) Mitochondria coordinate sites of axon branching through localized intra‐axonal protein synthesis. Cell Rep 5, 1564–1575. ; Genova ML & Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837, 427–443. ; Fricker M, Tolkovsky AM, Borutaite V, Coleman M & Brown GC (2018) Neuronal cell death. Physiol Rev 98, 813–880. ; Redza‐Dutordoir M & Averill‐Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863, 2977–2992. ; Chen C, Liu TS, Zhao SC, Yang WZ, Chen ZP & Yan Y (2018) XIAP impairs mitochondrial function during apoptosis by regulating the Bcl‐2 family in renal cell carcinoma. Exp Ther Med 15, 4587–4593. ; Ryu YS, Lee Y, Lee KW, Hwang CY, Maeng JS, Kim JH, Seo YS, You KH, Song B & Kwon KS (2011) TRIM32 protein sensitizes cells to tumor necrosis factor (TNFα)‐induced apoptosis via its RING domain‐dependent E3 ligase activity against X‐linked inhibitor of apoptosis (XIAP). J Biol Chem 286, 25729–25738. ; Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA & Zhang F (2013) Genome engineering using the CRISPR‐Cas9 system. Nat Protoc 8, 2281–2308. ; Singh K, Sripada L, Lipatova A, Roy M, Prajapati P, Gohel D, Bhatelia K, Chumakov PM & Singh R (2018) NLRX1 resides in mitochondrial RNA granules and regulates mitochondrial RNA processing and bioenergetic adaptation. Biochim Biophys Acta 1865, 1260–1276. ; Jha P, Wang X & Auwerx J (2016) Analysis of mitochondrial respiratory chain Supercomplexes using blue native polyacrylamide gel electrophoresis (BN‐PAGE). Curr Protoc Mouse Biol 6, 1–14. ; Gohel D, Sripada L, Prajapati P, Currim F, Roy M, Singh K, Shinde A, Mane M, Kotadia D, Tassone F et al. (2021) Expression of expanded FMR1‐CGG repeats alters mitochondrial miRNAs and modulates mitochondrial functions and cell death in cellular model of FXTAS. Free Radic Biol Med 165, 100–110. ; Singh K, Poteryakhina A, Zheltukhin A, Bhatelia K, Prajapati P, Sripada L, Tomar D, Singh R, Singh AK, Chumakov PM et al. (2015) NLRX1 acts as tumor suppressor by regulating TNF‐α induced apoptosis and metabolism in cancer cells. Biochim Biophys Acta 1853, 1073–1086.
  • Grant Information: CRG/2019/000316 Science and Engineering Research Board
  • Contributed Indexing: Keywords: Parkinson's disease; TRIM32; XIAP; cell death; mitochondria
  • Substance Nomenclature: EC 2.3.2.27 (Ubiquitin-Protein Ligases) ; EC 2.3.2.27 (TRIM32 protein, human) ; 0 (Tripartite Motif Proteins) ; 0 (Reactive Oxygen Species) ; 0 (Transcription Factors) ; 0 (X-Linked Inhibitor of Apoptosis Protein) ; 0 (XIAP protein, human) ; 03L9OT429T (Rotenone) ; EC 7.1.1.2 (Electron Transport Complex I) ; 8HW4YBZ748 (Oxidopamine) ; 8L70Q75FXE (Adenosine Triphosphate)
  • Entry Date(s): Date Created: 20240206 Date Completed: 20240620 Latest Revision: 20240625
  • Update Code: 20240626

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -