Zum Hauptinhalt springen

Futoquinol improves Aβ <subscript>25-35</subscript> -induced memory impairment in mice by inhibiting the activation of p38MAPK through the glycolysis pathway and regulating the composition of the gut microbiota.

Zhang, Y ; Chen, H ; et al.
In: Phytotherapy research : PTR, Jg. 38 (2024-04-01), Heft 4, S. 1799-1814
Online academicJournal

Titel:
Futoquinol improves Aβ <subscript>25-35</subscript> -induced memory impairment in mice by inhibiting the activation of p38MAPK through the glycolysis pathway and regulating the composition of the gut microbiota.
Autor/in / Beteiligte Person: Zhang, Y ; Chen, H ; Zeng, M ; Guo, P ; Liu, M ; Cao, B ; Wang, R ; Hao, F ; Zheng, X ; Feng, W
Link:
Zeitschrift: Phytotherapy research : PTR, Jg. 38 (2024-04-01), Heft 4, S. 1799-1814
Veröffentlichung: <June 1990-> : Chichester : Wiley ; <i>Original Publication</i>: London : Heyden & Son, c1987-, 2024
Medientyp: academicJournal
ISSN: 1099-1573 (electronic)
DOI: 10.1002/ptr.8136
Schlagwort:
  • Animals
  • Mice
  • Amyloid beta-Peptides metabolism
  • Apoptosis
  • Chromatography, Liquid
  • Glucose pharmacology
  • Memory Disorders chemically induced
  • Memory Disorders drug therapy
  • Peptide Fragments adverse effects
  • Peptide Fragments metabolism
  • Tandem Mass Spectrometry
  • Alzheimer Disease chemically induced
  • Alzheimer Disease drug therapy
  • Alzheimer Disease metabolism
  • Gastrointestinal Microbiome drug effects
  • Lignans pharmacology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Phytother Res] 2024 Apr; Vol. 38 (4), pp. 1799-1814. <i>Date of Electronic Publication: </i>2024 Feb 08.
  • MeSH Terms: Alzheimer Disease* / chemically induced ; Alzheimer Disease* / drug therapy ; Alzheimer Disease* / metabolism ; Gastrointestinal Microbiome* / drug effects ; Lignans* / pharmacology ; Animals ; Mice ; Amyloid beta-Peptides / metabolism ; Apoptosis ; Chromatography, Liquid ; Glucose / pharmacology ; Memory Disorders / chemically induced ; Memory Disorders / drug therapy ; Peptide Fragments / adverse effects ; Peptide Fragments / metabolism ; Tandem Mass Spectrometry
  • References: Abdallah, H. M., El Sayed, N. S., Sirwi, A., Ibrahim, S. R. M., Mohamed, G. A., & Abdel Rasheed, N. O. (2021). Mangostanaxanthone IV ameliorates streptozotocin‐induced neuro‐inflammation, amyloid deposition, and tau hyperphosphorylation via modulating PI3K/Akt/GSK‐3β pathway. Biology (Basel), 10(12), 1298–1298. ; Baik, S. H., Kang, S., Lee, W., Choi, H., Chung, S., Kim, J. I., & Mook‐Jung, I. (2019). A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer's disease. Cell Metabolism, 30(3), 493–507.e496. ; Blagov, A. V., Grechko, A. V., Nikiforov, N. G., Borisov, E. E., Sadykhov, N. K., & Orekhov, A. N. (2022). Role of impaired mitochondrial dynamics processes in the pathogenesis of Alzheimer's disease. International Journal of Molecular Sciences, 23(13), 6954–6954. ; Cao, B., Zeng, M., Zhang, Q., Zhang, B., Cao, Y., Wu, Y., Feng, W., & Zheng, X. (2021). Amentoflavone ameliorates memory deficits and abnormal autophagy in Aβ25‐35‐induced mice by mTOR signaling. Neurochemical Research, 46(4), 921–934. ; Chen, H., Zhu, Y., Zhang, Y. L., Zeng, M. N., Cao, Y. G., Sun, P. T., Cao, B., Du, K., Zhao, X., Wang, X. W., Zheng, X. K., & Feng, W. S. (2022). Neolignans and amide alkaloids from the stems of piper kadsura and their neuroprotective activity. Phytochemistry, 203(null), 113336. ; Chen, W. N., Chin, K. W., Tang, K. S., Agatonovic‐Kustrin, S., & Yeong, K. Y. (2023). Neuroprotective, neurite enhancing, and cholinesterase inhibitory effects of Lamiaceae family essential oils in Alzheimer's disease model. Journal of Herbal Medicine, 41, 100696. https://doi.org/10.1016/j.hermed.2023.100696. ; Cuanalo‐Contreras, K., & Moreno‐Gonzalez, I. (2019). Natural products as modulators of the Proteostasis machinery: Implications in neurodegenerative diseases. International Journal of Molecular Sciences, 20(19), null. ; Depre, C., Rider, M. H., Veitch, K., & Hue, L. (1993). Role of fructose 2,6‐bisphosphate in the control of heart glycolysis. The Journal of Biological Chemistry, 268(18), 13274–13279. ; Dunham, S. J. B., McNair, K. A., Adams, E. D., Avelar‐Barragan, J., Forner, S., Mapstone, M., & Whiteson, K. L. (2022). Longitudinal analysis of the microbiome and metabolome in the 5xfAD mouse model of Alzheimer's disease. mBio, 13(6), e0179422. ; Giridharan, V. V., Barichello De Quevedo, C. E., & Petronilho, F. (2022). Microbiota‐gut‐brain axis in the Alzheimer's disease pathology ‐ an overview. Neuroscience Research, 181(null), 17–21. ; Goyal, M. S., Blazey, T., Metcalf, N. V., McAvoy, M. P., Strain, J. F., Rahmani, M., Durbin, T. J., Xiong, C., Benzinger, T. L., Morris, J. C., Raichle, M. E., & Vlassenko, A. G. (2023). Brain aerobic glycolysis and resilience in Alzheimer disease. Proc Natl Acad Sci USA, 120(7), e2212256120. ; Guo, P., Zeng, M., Wang, S., Cao, B., Liu, M., Zhang, Y., Jia, J., Zhang, Q., Zhang, B., Wang, R., Zheng, X., & Feng, W. (2022). Eriodictyol and Homoeriodictyol improve memory impairment in Aβ25‐35‐induced mice by inhibiting the NLRP3 inflammasome. Molecules, 27(8), null. ; Gupta, J., & Nebreda, A. R. (2015). Roles of p38α mitogen‐activated protein kinase in mouse models of inflammatory diseases and cancer. The FEBS Journal, 282(10), 1841–1857. ; Hamieh, A. M., Camperos, E., Hernier, A. M., & Castagné, V. (2021). C57BL/6 mice as a preclinical model to study age‐related cognitive deficits: Executive functions impairment and inter‐individual differences. Brain Research, 1751(null), 147173. ; He, J., Zhong, W., Zhang, M., Zhang, R., & Hu, W. (2018). P38 mitogen‐activated protein kinase and Parkinson's disease. Translational Neuroscience, 9(null), 147–153. ; Huang, T. Y., Wu, C. C., & Su, W. T. (2021). Biological and cytoprotective effect of piper kadsura Ohwi against hydrogen‐peroxide‐induced oxidative stress in human SW1353 cells. Molecules, 26(20), null. ; Huang, Y., Shi, X., Li, Z., Shen, Y., Shi, X., Wang, L., Li, G., Yuan, Y., Wang, J., Zhang, Y., Zhao, L., Zhang, M., Kang, Y., & Liang, Y. (2018). Possible association of firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatric Disease and Treatment, 14(null), 3329–3337. ; Jaroudi, W., Garami, J., Garrido, S., Hornberger, M., Keri, S., & Moustafa, A. A. (2017). Factors underlying cognitive decline in old age and Alzheimer's disease: The role of the hippocampus. Rev Neuroscience, 28(7), 705–714. ; Jo, S. L., Yang, H., Lee, S. R., Heo, J. H., Lee, H. W., & Hong, E. J. (2022). Curcumae radix decreases neurodegenerative markers through glycolysis decrease and TCA cycle activation. Nutrients, 14(8), null. ; Lane, C. A., Hardy, J., & Schott, J. M. (2018). Alzheimer's disease. Eur j Neurol, 25(1), 59–70, Alzheimer's disease. ; Li, L., Li, Y., Miao, C., Liu, Y., & Liu, R. (2020). Coriolus versicolor polysaccharides (CVP) regulates neuronal apoptosis in cerebral ischemia‐reperfusion injury via the p38MAPK signaling pathway. Ann Transl Med, 8(18), 1168. ; Liu, D., & Du, D. (2020). Mulberry fruit extract alleviates cognitive impairment by promoting the clearance of amyloid‐β and inhibiting neuroinflammation in Alzheimer's disease mice. Neurochemical Research, 45(9), 2009–2019. ; Lueptow, L. M. (2017). Novel object recognition test for the investigation of learning and memory in mice. Journal of Visualized Experiments, null(126), null. ; Luo, S., Ma, C., Zhu, M. Q., Ju, W. N., Yang, Y., & Wang, X. (2020). Application of iron oxide nanoparticles in the diagnosis and treatment of neurodegenerative diseases with emphasis on Alzheimer's disease. Frontiers in Cellular Neuroscience, 14, 21. ; Ma, Q., Xing, C., Long, W., Wang, H. Y., Liu, Q., & Wang, R. F. (2019). Impact of microbiota on central nervous system and neurological diseases: The gut‐brain axis. Journal of Neuroinflammation, 16(1), 53. ; Ma, X., Zhang, Y., Gou, D., Ma, J., Du, J., Wang, C., Li, S., & Cui, H. (2022). Metabolic reprogramming of microglia enhances proinflammatory cytokine release through EphA2/p38 MAPK pathway in Alzheimer's disease. Journal of Alzheimer's Disease, 88(2), 771–785. ; Mancuso, C., & Santangelo, R. (2018). Alzheimer's disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence. Pharmacological Research, 129(null), 329–336. ; Meng, Q., Guo, P., Jiang, Z., Bo, L., & Bian, J. (2020). Dexmedetomidine inhibits LPS‐induced proinflammatory responses via suppressing HIF1α‐dependent glycolysis in macrophages. Aging (Albany NY), 12(10), 9534–9548. ; Millucci, L., Ghezzi, L., Bernardini, G., & Santucci, A. (2010). Conformations and biological activities of amyloid beta peptide 25‐35. Curr Protein Pept sc, 11(1), 54–67. ; Mukherjee, S., Ghosh, S., Sengupta, A., Sarkar, S., Keswani, T., Chatterjee, R., & Bhattacharyya, A. (2022). IL‐6 dependent expansion of inflammatory MDSCs (CD11b+ gr‐1+) promote Th‐17 mediated immune response during experimental cerebral malaria. Cytokine, 155(null), 155910. ; Nemati, S. S., Sadeghi, L., Dehghan, G., & Sheibani, N. (2023). Lateralization of the hippocampus: A review of molecular, functional, and physiological properties in health and disease. Behavioural Brain Research, 454(null), 114657. ; Neumann, H. (2000). The immunological microenvironment in the CNS: Implications on neuronal cell death and survival. J Neural Transm‐Supp, 59(null), 59–68. ; Pedrós, I., Petrov, D., Allgaier, M., Sureda, F., Barroso, E., Beas‐Zarate, C., Auladell, C., Pallàs, M., Vázquez‐Carrera, M., Casadesús, G., Folch, J., & Camins, A. (2014). Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochimica et Biophysica Acta, 1842(9), 1556–1566. ; Preziuso, A., Piccirillo, S., Cerqueni, G., Serfilippi, T., Terenzi, V., Vinciguerra, A., Orciani M, Amoroso S, Magi S Lariccia, V. (2023). Exploring the role of NCX1 and NCX3 in an in vitro model of metabolism impairment: Potential neuroprotective targets for Alzheimer's disease. Biology (Basel), 12(7), 1005. ; Rajesh, Y., & Kanneganti, T. D. (2022). Innate immune cell death in neuroinflammation and Alzheimer's disease. Cell, 11(12), 1885–1885. ; Sánchez‐Sarasúa, S., Fernández‐Pérez, I., Espinosa‐Fernández, V., Sánchez‐Pérez, A. M., & Ledesma, J. C. (2020). Can we treat neuroinflammation in Alzheimer's disease? International Journal of Molecular Sciences, 21(22), null. ; Severini, C., Barbato, C., Di Certo, M. G., Gabanella, F., Petrella, C., Di Stadio, A., de Vincentiis, M., Polimeni, A., Ralli, M., & Greco, A. (2021). Alzheimer's disease: New concepts on the role of autoimmunity and NLRP3 inflammasome in the pathogenesis of the disease. Current Neuropharmacology, 19(4), 498–512. ; Singh, A., Upadhayay, S., & Mehan, S. (2021). Understanding abnormal c‐JNK/p38MAPK signaling overactivation involved in the progression of multiple sclerosis: Possible therapeutic targets and impact on neurodegenerative diseases. Neurotoxicity Research, 39(5), 1630–1650. ; Socała, K., Doboszewska, U., Szopa, A., Serefko, A., Włodarczyk, M., Zielińska, A., Poleszak, E., Fichna, J., & Wlaź, P. (2021). The role of microbiota‐gut‐brain axis in neuropsychiatric and neurological disorders. Pharmacological Research, 172(null), 105840. ; Sun, M., Ma, K., Wen, J., Wang, G., Zhang, C., Li, Q., Bao, X., & Wang, H. (2020). A review of the brain‐gut‐microbiome Axis and the potential role of microbiota in Alzheimer's disease. Journal of Alzheimer's Disease, 73(3), 849–865. ; Sun, Y., Xiao, Q., Luo, C., Zhao, Y., Pu, D., Zhao, K., Chen, J., Wang, M., & Liao, Z. (2017). High‐glucose induces tau hyperphosphorylation through activation of TLR9‐P38MAPK pathway. Experimental Cell Research, 359(2), 312–318. ; Swatton, J. E., Sellers, L. A., Faull, R. L., Holland, A., Iritani, S., & Bahn, S. (2004). Increased MAP kinase activity in Alzheimer's and down syndrome but not in schizophrenia human brain. The European Journal of Neuroscience, 19(10), 2711–2719. ; Vogt, N. M., Kerby, R. L., Dill‐McFarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., Carlsson, C. M., Asthana, S., Zetterberg, H., Blennow, K., Bendlin, B. B., & Rey, F. E. (2017). Gut microbiome alterations in Alzheimer's disease. Scientific Reports, 7(1), 13537. ; Wang, S. S., Li, X. H., Liu, P., Li, J., & Liu, L. (2022). The relationship between Alzheimer's disease and intestinal microflora structure and inflammatory factors. Frontiers in Aging Neuroscience, 14(null), 972982. ; Wang, Z. J., Li, X. R., Chai, S. F., Li, W. R., Li, S., Hou, M., Li, J. L., Ye, Y. C., Cai, H. Y., Hölscher, C., & Wu, M. N. (2023). Semaglutide ameliorates cognition and glucose metabolism dysfunction in the 3xTg mouse model of Alzheimer's disease via the GLP‐1R/SIRT1/GLUT4 pathway. Neuropharmacology, 240(null), 109716. ; Weber, R., Fleming, V., Hu, X., Nagibin, V., Groth, C., Altevogt, P., Utikal, J., & Umansky, V. (2018). Myeloid‐derived suppressor cells hinder the anti‐cancer activity of immune checkpoint inhibitors. Frontiers in Immunology, 9(null), 1310. ; Wei, C., Ding, X., Liu, C., Pei, Y., Zhong, Y., & Sun, W. (2019). Mechanism of taurine in alleviating myocardial oxidative stress in rats after burn through p38 MAPK signaling pathway. Minerva Medica, 110(5), 472–475. ; Wu, Y., Hang, Z., Lei, T., & Du, H. (2022). Intestinal Flora affect Alzheimer's disease by regulating endogenous hormones. Neurochemical Research, 47(12), 3565–3582. ; Yasuda, S., Sugiura, H., Tanaka, H., Takigami, S., & Yamagata, K. (2011). p38 MAP kinase inhibitors as potential therapeutic drugs for neural diseases. Central Nervous System Agents in Medicinal Chemistry, 11(1), 45–59. ; Yu, H., Shi, J., Lin, Y., Zhang, Y., Luo, Q., Huang, S., Wang, S., Wei, J., Huang, J., Li, C., & Ji, L. (2022). Icariin ameliorates Alzheimer's disease pathology by alleviating myelin injury in 3 × Tg‐AD mice. Neurochemical Research, 47(4), 1049–1059. ; Zeng, M., Feng, A., Zhao, C., Zhang, B., Guo, P., Liu, M., Zhang, Q., Zhang, Y., Fan, R., Lyu, J., & Zheng, X. (2022). Adenosine ameliorated Aβ25‐35‐induced brain injury through the inhibition of apoptosis and oxidative stress via an ERα pathway. Brain Research, 1788(null), 147944.
  • Grant Information: 20-21ZY2152 Special Project of Scientific Research on Traditional Chinese Medicine in Henan; 232102310441 the Key Projects for Science and Technology Development of Henan; RSBSJJ2019-10 Doctoral Fund of Henan University of Chinese Medicine; 2017YFC1702800 the National Key Research and Development Project; 2019YFC1708802 the National Key Research and Development Project; 171100310500 the Major Science and Technology Projects in Henan Province: Study on the key technology for quality control and the key characteristics of Rehmannia glutinosa, Dioscorea opposite Thunb. and Achyranthes bidentata Blume. from Henan Province; ZYQR201810080 Henan province high-level personnel special support "Zhong-Yuan One Thousand People Plan," Zhongyuan Leading Talent
  • Contributed Indexing: Keywords: Alzheimer's disease; Futoquinol; glycolysis pathway; gut microbiota; p38MAPK
  • Substance Nomenclature: 0 (Amyloid beta-Peptides) ; 0 (futoquinol) ; IY9XDZ35W2 (Glucose) ; 0 (Lignans) ; 0 (Peptide Fragments)
  • Entry Date(s): Date Created: 20240208 Date Completed: 20240410 Latest Revision: 20240411
  • Update Code: 20240412

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -