Zum Hauptinhalt springen

A cohort study of neurodevelopmental disorders and/or congenital anomalies using high resolution chromosomal microarrays in southern Brazil highlighting the significance of ASD.

Chaves, TF ; Ocampos, M ; et al.
In: Scientific reports, Jg. 14 (2024-02-14), Heft 1, S. 3762
Online academicJournal

Titel:
A cohort study of neurodevelopmental disorders and/or congenital anomalies using high resolution chromosomal microarrays in southern Brazil highlighting the significance of ASD.
Autor/in / Beteiligte Person: Chaves, TF ; Ocampos, M ; Barbato, IT ; de Camargo Pinto LL ; de Luca GR ; Barbato Filho, JH ; Bernardi, P ; Costa Netto Muniz, Y ; Francesca Maris, A
Link:
Zeitschrift: Scientific reports, Jg. 14 (2024-02-14), Heft 1, S. 3762
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2024
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-024-54385-2
Schlagwort:
  • Child
  • Humans
  • Cohort Studies
  • Retrospective Studies
  • Brazil epidemiology
  • DNA Copy Number Variations genetics
  • Uniparental Disomy
  • Chromosomes
  • Autism Spectrum Disorder diagnosis
  • Autism Spectrum Disorder genetics
  • Neurodevelopmental Disorders diagnosis
  • Neurodevelopmental Disorders genetics
  • Intellectual Disability genetics
  • Intellectual Disability diagnosis
  • South American People
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Sci Rep] 2024 Feb 14; Vol. 14 (1), pp. 3762. <i>Date of Electronic Publication: </i>2024 Feb 14.
  • MeSH Terms: Autism Spectrum Disorder* / diagnosis ; Autism Spectrum Disorder* / genetics ; Neurodevelopmental Disorders* / diagnosis ; Neurodevelopmental Disorders* / genetics ; Intellectual Disability* / genetics ; Intellectual Disability* / diagnosis ; South American People* ; Child ; Humans ; Cohort Studies ; Retrospective Studies ; Brazil / epidemiology ; DNA Copy Number Variations / genetics ; Uniparental Disomy ; Chromosomes
  • References: International Classification of Functioning, Disability and Health World Health Organization Geneva ICF II WHO Library Cataloguing-in-Publication Data International Classification of Functioning, Disability and Health : ICF. https://apps.who.int/iris/bitstream/handle/10665/42407/9241545429.pdf (2001). ; Cappuccio, G. et al. New insights in the interpretation of array-CGH: Autism spectrum disorder and positive family history for intellectual disability predict the detection of pathogenic variants. Ital. J. Pediatr. 42, 39 (2016). (PMID: 27072107483001910.1186/s13052-016-0246-7) ; Abou Jamra, R. et al. Homozygosity mapping in 64 Syrian consanguineous families with non-specific intellectual disability reveals 11 novel loci and high heterogeneity. Eur. J. Hum. Genet. 19, 1161–1166 (2011). (PMID: 21629298319815310.1038/ejhg.2011.98) ; DSM-5 Diagnostic Classification. Diagnostic and Statistical Manual of Mental Disorders. https://doi.org/10.1176/appi.books.9780890425596.x00DiagnosticClassification (American Psychiatric Association, 2013).. ; Data & Statistics on Autism Spectrum Disorder | CDC. https://www.cdc.gov/ncbddd/autism/data.html . ; SFARI Gene—Welcome. https://gene.sfari.org/ . ; Salari, N. et al. The global prevalence of autism spectrum disorder: A comprehensive systematic review and meta-analysis. Ital. J. Pediatr. 2022(48), 1–16 (2022). ; Idring, S. et al. Changes in prevalence of autism spectrum disorders in 2001–2011: Findings from the Stockholm Youth Cohort. J. Autism Dev. Disord. 45, 1766–1773 (2015). (PMID: 2547536410.1007/s10803-014-2336-y) ; Qiu, S. et al. Prevalence of autism spectrum disorder in Asia: A systematic review and meta-analysis. Psychiatry Res. 284, 112679 (2020). (PMID: 3173537310.1016/j.psychres.2019.112679) ; Paula, C. S., Fombonne, E., Gadia, C., Tuchman, R. & Rosanoff, M. Autism in Brazil: Perspectives from science and society. Rev. Assoc. Med. Bras. 57, 2–5 (2011). (PMID: 2139044510.1016/S0104-4230(11)70002-1) ; Brentani, H., Polanczyk, G. V. & Miguel, E. C. Brazil and autism. Encycl. Autism Spectr. Disord. https://doi.org/10.1007/978-3-319-91280-6_102021 (2021). (PMID: 10.1007/978-3-319-91280-6_102021) ; Rylaarsdam, L. & Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell. Neurosci. 13, 11 (2019). (PMID: 10.3389/fncel.2019.00385) ; Tammimies, K. et al. Association between copy number variation and response to social skills training in autism spectrum disorder. Sci. Rep. 9, 13 (2019). (PMID: 10.1038/s41598-019-46396-1) ; Pinto, D. et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am. J. Hum. Genet. 94, 677 (2014). (PMID: 24768552406755810.1016/j.ajhg.2014.03.018) ; Hippolyte, L. et al. The number of genomic copies at the 16p11.2 locus modulates language, verbal memory, and inhibition. Biol. Psychiatry 80, 129–139 (2016). (PMID: 2674292610.1016/j.biopsych.2015.10.021) ; Calderoni, S. et al. Evaluation of chromosome microarray analysis in a large cohort of females with autism spectrum disorders: A single center Italian study. J. Pers. Med. 10, 1–18 (2020). (PMID: 10.3390/jpm10040160) ; Lee, C. L. et al. Increased diagnostic yield of array comparative genomic hybridization for autism spectrum disorder in one institution in Taiwan. Medicina (B. Aires) 58, 6 (2022). ; Gaugler, T. et al. Most genetic risk for autism resides with common variation. Nat. Genet. 46, 881–885 (2014). (PMID: 25038753413741110.1038/ng.3039) ; Song, T. et al. Detection of submicroscopic chromosomal aberrations by chromosomal microarray analysis for the prenatal diagnosis of central nervous system abnormalities. J. Clin. Lab. Anal. 34, e23434 (2020). (PMID: 32677110759592610.1002/jcla.23434) ; Miller, D. T. et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749 (2010). (PMID: 20466091286900010.1016/j.ajhg.2010.04.006) ; Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020). (PMID: 3169083510.1038/s41436-019-0686-8) ; Yang, H.-C., Chang, L.-C., Huggins, R. M., Chen, C.-H. & Mullighan, C. G. LOHAS: Loss-of-heterozygosity analysis suite. Genet. Epidemiol. 35, 247–260 (2011). (PMID: 2131226210.1002/gepi.20573) ; Alabdullatif, M. A., Al Dhaibani, M. A., Khassawneh, M. Y. & El-Hattab, A. W. Chromosomal microarray in a highly consanguineous population: Diagnostic yield, utility of regions of homozygosity, and novel mutations. Clin. Genet. 91, 616–622 (2011). (PMID: 10.1111/cge.12872) ; Kearney, H. M., Kearney, J. B. & Conlin, L. K. Diagnostic implications of excessive homozygosity detected by SNP-based microarrays: Consanguinity, uniparental disomy, and recessive single-gene mutations. Clin. Lab. Med. 31, 595–613 (2011). (PMID: 2211873910.1016/j.cll.2011.08.003) ; Spence, J. E. et al. Uniparental disomy as a mechanism for human genetic disease. Am. J. Hum. Genet. 42, 217–226 (1988). (PMID: 28935431715272) ; Iourov, I. Y., Vorsanova, S. G., Korostelev, S. A., Zelenova, M. A. & Yurov, Y. B. Long contiguous stretches of homozygosity spanning shortly the imprinted loci are associated with intellectual disability, autism and/or epilepsy. Mol. Cytogenet. 8, 77 (2015). (PMID: 26478745460829810.1186/s13039-015-0182-z) ; Hunter, N. Meiotic recombination: The essence of heredity. Cold Spring Harb. Perspect. Biol. 7, 8 (2015). ; Chaves, T. F. et al. Long contiguous stretches of homozygosity detected by chromosomal microarrays (CMA) in patients with neurodevelopmental disorders in the South of Brazil. BMC Med. Genomics 12, 50 (2019). (PMID: 30866944641713610.1186/s12920-019-0496-5) ; Gardner, R. J., Sutherland, G. R. & Shaffer, L. G. Chromosome Abnormalities and Genetic Counseling. https://doi.org/10.1093/med/9780195375336.001.0001 (Oxford University Press, 2011). ; Engel, E. A fascination with chromosome rescue in uniparental disomy: Mendelian recessive outlaws and imprinting copyrights infringements. Eur. J. Hum. Genet. 14, 1158–1169. https://doi.org/10.1038/sj.ejhg.5201619 (2006). (PMID: 10.1038/sj.ejhg.520161916724013) ; Kotzot, D. Complex and segmental uniparental disomy updated. J. Med. Genet. 45, 545–556. https://doi.org/10.1136/jmg.2008.058016 (2008). (PMID: 10.1136/jmg.2008.05801618524837) ; Liehr, T. Cytogenetic contribution to uniparental disomy (UPD). Mol. Cytogenet. 3, 8 (2010). (PMID: 20350319285355410.1186/1755-8166-3-8) ; Chaves, T. F. et al. Copy number variations in a cohort of 420 individuals with neurodevelopmental disorders from the South of Brazil. Sci. Rep. 9, 1–20 (2019). (PMID: 10.1038/s41598-019-54347-z) ; Franklin. https://franklin.genoox.com/clinical-db/home . ; Li, L.-H. et al. Long contiguous stretches of homozygosity in the human genome. Hum. Mutat. 27, 1115–1121 (2006). (PMID: 1695541510.1002/humu.20399) ; Pajusalu, S. et al. The diagnostic utility of single long contiguous stretches of homozygosity in patients without parental consanguinity. Mol. Syndromol. 6, 135–140 (2015). (PMID: 26733775469862610.1159/000438776) ; Wang, J.-C. et al. Regions of homozygosity identified by oligonucleotide SNP arrays: Evaluating the incidence and clinical utility. Eur. J. Hum. Genet. 23, 663–671 (2015). (PMID: 2511802610.1038/ejhg.2014.153) ; Sanchez, P. Common AOH Hispanics (2017) (personal communication). ; Kearney, H. M. Common AOH Blocks-Fullerton (2017) (personal communication). ; Roselló, M. et al. Phenotype profiling of patients with intellectual disability and copy number variations. Eur. J. Paediatr. Neurol. 18, 558–566 (2014). (PMID: 2481507410.1016/j.ejpn.2014.04.010) ; Bartnik, M. et al. Application of array comparative genomic hybridization in 102 patients with epilepsy and additional neurodevelopmental disorders. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 159B, 760–771 (2012). ; Coutton, C. et al. Array-CGH in children with mild intellectual disability: A population-based study. Eur. J. Pediatr. 174, 75–83 (2015). (PMID: 2498512510.1007/s00431-014-2367-6) ; Preiksaitiene, E. et al. Considering specific clinical features as evidence of pathogenic copy number variants. J. Appl. Genet. 55, 189–196 (2014). (PMID: 2453582810.1007/s13353-014-0197-x) ; Lay-Son, G. et al. Chromosomal microarrays testing in children with developmental disabilities and congenital anomalies. J. Pediatr. (Rio. J.) 91, 189–195 (2015). (PMID: 2545887610.1016/j.jped.2014.07.003) ; Chen, C. P. et al. Prenatal diagnosis and molecular cytogenetic characterization of a de novo interstitial duplication of 14q (14q31.3→q32.12) associated with abnormal maternal serum biochemistry. Taiwan. J. Obstet. Gynecol. 52, 125–128 (2013). (PMID: 2354823310.1016/j.tjog.2012.08.002) ; García-Acero, M., Suárez-Obando, F. & Gómez-Gutiérrez, A. CGH analysis in Colombian patients: Findings of 1374 arrays in a seven-year study. Mol. Cytogenet. 11, 46 (2018). (PMID: 30166995610401910.1186/s13039-018-0398-9) ; Pereira, R. R. et al. Screening for intellectual disability using high-resolution CMA technology in a retrospective cohort from Central Brazil. PLoS One 9, e103117 (2014). (PMID: 25061755411134710.1371/journal.pone.0103117) ; Krepischi, A. C. V. et al. Chromosomal microarray analyses from 5778 patients with neurodevelopmental disorders and congenital anomalies in Brazil. Sci. Rep. 12, 1–11 (2022). (PMID: 10.1038/s41598-022-19274-6) ; Pfundt, R. et al. Clinical performance of the CytoScan Dx assay in diagnosing developmental delay/intellectual disability. Genet. Med. 18, 23 (2022). ; Anazi, S. et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol. Psychiatry 22, 615–624 (2017). (PMID: 2743129010.1038/mp.2016.113) ; Kashevarova, A. A. et al. Array CGH analysis of a cohort of Russian patients with intellectual disability. Gene 536, 145–150 (2014). (PMID: 2429102610.1016/j.gene.2013.11.029) ; Fan, Y. et al. Chromosomal microarray analysis in developmental delay and intellectual disability with comorbid conditions. BMC Med. Genomics 11, 49 (2018). (PMID: 29793483596860810.1186/s12920-018-0368-4) ; Hochstenbach, R., van Binsbergen, E., Schuring-Blom, H., Buijs, A. & Ploos van Amstel, H. K. A survey of undetected, clinically relevant chromosome abnormalities when replacing postnatal karyotyping by whole genome sequencing. Eur. J. Med. Genet. 62, 103543 (2019). (PMID: 3024841010.1016/j.ejmg.2018.09.010) ; Hochstenbach, R. et al. Array analysis and karyotyping: Workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur. J. Med. Genet. 52, 161–169 (2009). (PMID: 1936217410.1016/j.ejmg.2009.03.015) ; Perovic, D. et al. Chromosomal microarray in postnatal diagnosis of congenital anomalies and neurodevelopmental disorders in Serbian patients. J. Clin. Lab. Anal. 36, 24441 (2022). (PMID: 10.1002/jcla.24441) ; Luo, Y. et al. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements. Hum. Mol. Genet. 20, 3769 (2011). (PMID: 21729882316828610.1093/hmg/ddr293) ; Peng, G. et al. Estimation on risk of spontaneous abortions by genomic disorders from a meta-analysis of microarray results on large case series of pregnancy losses. Mol. Genet. Genomic Med. 00, e2181 (2023). (PMID: 10.1002/mgg3.2181) ; Chen, C.-P. et al. Prenatal diagnosis of a familial 15q11.2 (BP1-BP2) microdeletion encompassing TUBGCP5, CYFIP1, NIPA2 and NIPA1 in a fetus with ventriculomegaly, microcephaly and intrauterine growth restriction on prenatal ultrasound. Taiwan. J. Obstet. Gynecol. 57, 730–733 (2018). (PMID: 3034266110.1016/j.tjog.2018.08.022) ; Yuan, H. et al. CNV profiles of Chinese pediatric patients with developmental disorders. Genet. Med. 23, 669–678 (2021). (PMID: 3340273810.1038/s41436-020-01048-y) ; Moeschler, J. B. et al. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics 134, e903–e918 (2014). (PMID: 2515702010.1542/peds.2014-1839) ; Moeschler, J. B. et al. Clinical report: Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics 134, e903 (2014). (PMID: 2515702010.1542/peds.2014-1839) ; Uddin, M. et al. A high-resolution copy-number variation resource for clinical and population genetics. Genet. Med. 17, 747–752. https://doi.org/10.1038/gim.2014.178 (2015). (PMID: 10.1038/gim.2014.17825503493) ; Werling, D. M. & Geschwind, D. H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 26, 146 (2013). (PMID: 23406909416439210.1097/WCO.0b013e32835ee548) ; Ferri, S. L., Abel, T. & Brodkin, E. S. Sex differences in autism spectrum disorder: A review. Curr. Psychiatry Rep. 20, 9 (2018). (PMID: 29504047647792210.1007/s11920-018-0874-2) ; Beggiato, A. et al. Gender differences in autism spectrum disorders: Divergence among specific core symptoms. Autism Res. 10, 680–689 (2017). (PMID: 2780940810.1002/aur.1715) ; Williams, O. O. F., Coppolino, M. & Perreault, M. L. Sex differences in neuronal systems function and behaviour: Beyond a single diagnosis in autism spectrum disorders. Transl. Psychiatry 11, 625 (2021). (PMID: 34887388866082610.1038/s41398-021-01757-1) ; Loomes, R., Hull, L. & Mandy, W. P. L. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 466–474 (2017). (PMID: 2854575110.1016/j.jaac.2017.03.013) ; James, W. H. & Grech, V. Potential explanations of behavioural and other differences and similarities between males and females with autism spectrum disorder. Early Hum. Dev. 140, 11 (2020). (PMID: 10.1016/j.earlhumdev.2019.104863) ; Rosti, R. O., Sadek, A. A., Vaux, K. K. & Gleeson, J. G. The genetic landscape of autism spectrum disorders. Dev. Med. Child Neurol. 56, 12–18 (2014). (PMID: 2411670410.1111/dmcn.12278) ; Lovrečić, L. et al. Diagnostic efficacy and new variants in isolated and complex autism spectrum disorder using molecular karyotyping. J. Appl. Genet. 59, 179–185 (2018). (PMID: 2956464510.1007/s13353-018-0440-y) ; Chiurazzi, P. et al. Genetic analysis of intellectual disability and autism. Acta Bio Med. Atenei Parm. 91, 1–5 (2020). ; Xiong, J. et al. Neurological diseases with autism spectrum disorder: Role of ASD risk genes. Front. Neurosci. 13, 349 (2019). (PMID: 31031587647031510.3389/fnins.2019.00349) ; Tammimies, K. et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA-J. Am. Med. Assoc. 314, 595–903 (2015). (PMID: 10.1001/jama.2015.10078) ; Zarrei, M. et al. A large data resource of genomic copy number variation across neurodevelopmental disorders. NPJ Genomic Med. 4, 26 (2019). (PMID: 10.1038/s41525-019-0098-3) ; Costa, C. I. S. et al. Copy number variations in a Brazilian cohort with autism spectrum disorders highlight the contribution of cell adhesion genes. Clin. Genet. 101, 134–141 (2022). (PMID: 3466425510.1111/cge.14072) ; Sys, M. et al. Can clinical characteristics be criteria to perform chromosomal microarray analysis in children and adolescents with autism spectrum disorders?. Minerva Pediatr. 70, 225–232 (2018). (PMID: 2760748310.23736/S0026-4946.16.04570-9) ; Chehbani, F. et al. Yield of array-CGH analysis in Tunisian children with autism spectrum disorder. Mol. Genet. Genomic Med. 10, 1939 (2022). (PMID: 10.1002/mgg3.1939) ; Yang, E. H. et al. Chromosomal microarray in children with developmental delay: The experience of a tertiary center in Korea. Front. Pediatr. 9, 690493 (2021). (PMID: 34604135848025710.3389/fped.2021.690493) ; Cheng, S. S. W. et al. Experience of chromosomal microarray applied in prenatal and postnatal settings in Hong Kong. Am. J. Med. Genet. Part C Semin. Med. Genet. 181, 196–207 (2019). ; Munnich, A. et al. Impact of on-site clinical genetics consultations on diagnostic rate in children and young adults with autism spectrum disorder. Mol. Autism 10, 33 (2019). (PMID: 31406558668652610.1186/s13229-019-0284-2) ; Lok, W. Y. et al. Chromosomal abnormalities and neurological outcomes in fetal cerebral ventriculomegaly: A retrospective cohort analysis. Hong Kong Med. J. 27, 428–436 (2021). (PMID: 3494973110.12809/hkmj208850) ; Harris, H. K., Sideridis, G. D., Barbaresi, W. J. & Harstad, E. Pathogenic yield of genetic testing in autism spectrum disorder. Pediatrics. https://doi.org/10.1542/peds.2020-018481 (2020). (PMID: 10.1542/peds.2020-018481333036357236443) ; Capkova, P. et al. MLPA is a practical and complementary alternative to CMA for diagnostic testing in patients with autism spectrum disorders and identifying new candidate CNVs associated with autism. PeerJ 6, 6183 (2019). (PMID: 10.7717/peerj.6183) ; Ho, K. S. et al. Clinical performance of an ultrahigh resolution chromosomal microarray optimized for neurodevelopmental disorders. Biomed Res. Int. 2016, 4534 (2016). (PMID: 10.1155/2016/3284534) ; Roberts, J. L., Hovanes, K., Dasouki, M., Manzardo, A. M. & Butler, M. G. Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders or learning disability presenting for genetic services. Gene 535, 70 (2014). (PMID: 2418890110.1016/j.gene.2013.10.020) ; Chang, Y. S., Lin, C. Y., Huang, H. Y., Chang, J. G. & Kuo, H. T. Chromosomal microarray and whole-exome sequence analysis in Taiwanese patients with autism spectrum disorder. Mol. Genet. Genomic Med. 7, 996 (2019). (PMID: 10.1002/mgg3.996) ; Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445 (2007). (PMID: 17363630299350410.1126/science.1138659) ; Christian, S. L. et al. Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biol. Psychiatry 63, 1111 (2008). (PMID: 18374305244034610.1016/j.biopsych.2008.01.009) ; Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477 (2008). (PMID: 18252227242691310.1016/j.ajhg.2007.12.009) ; Alhazmi, S. et al. Multiple recurrent copy number variations (CNVs) in chromosome 22 including 22q11.2 associated with autism spectrum disorder. Pharmgenomics Pers. Med. 15, 705 (2022). (PMID: 358985569309317) ; Wenger, T. L. et al. 22q11.2 duplication syndrome: elevated rate of autism spectrum disorder and need for medical screening. Mol. Autism 7, 27 (2016). (PMID: 27158440485998410.1186/s13229-016-0090-z) ; Budisteanu, M. et al. The phenotypic spectrum of 15q13.3 region duplications: report of 5 patients. Genes (Basel) 12, 1025 (2021). (PMID: 3435604110.3390/genes12071025) ; Li, M., Long, C. & Yang, L. Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. Biomed. Res. Int. 2015, 1–10 (2015). ; Velinov, M. Genomic copy number variations in the autism clinic—Work in progress. Front. Cell. Neurosci. 13, 57 (2019). (PMID: 30837845638961910.3389/fncel.2019.00057) ; Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012). (PMID: 22817899352552310.1016/j.cell.2012.06.030) ; Szczałuba, K. et al. Application of array comparative genomic hybridization in newborns with multiple congenital anomalies. Adv. Exp. Med. Biol. 912, 1–9 (2016). (PMID: 2698732010.1007/5584_2016_235) ; Oğuz, S. et al. Diagnostic yield of microarrays in individuals with non-syndromic developmental delay and intellectual disability. J. Intellect. Disabil. Res. 65, 1033–1048 (2021). (PMID: 3466194010.1111/jir.12892) ; Martínez, F. et al. High diagnostic yield of syndromic intellectual disability by targeted next-generation sequencing. J. Med. Genet. 54, 87–92 (2017). (PMID: 2762090410.1136/jmedgenet-2016-103964) ; Ho, K. S. et al. Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders using an ultra-high resolution chromosomal microarray optimized for neurodevelopmental disorders. Int. J. Mol. Sci. 17, 2070 (2016). (PMID: 27941670518787010.3390/ijms17122070) ; Wiszniewska, J. et al. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur. J. Hum. Genet. 22, 79–87 (2014). (PMID: 2369527910.1038/ejhg.2013.77) ; Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010). (PMID: 1981254510.1038/nature08516) ; Vorsanova, S. G., Yurov, Y. B., Soloviev, I. V. & Iourov, I. Y. Molecular cytogenetic diagnosis and somatic genome variations. Curr. Genomics 11, 440–446 (2010). (PMID: 21358989301872510.2174/138920210793176010) ; Nakka, P. et al. Characterization of prevalence and health consequences of uniparental disomy in four million individuals from the general population. Am. J. Hum. Genet. 105, 921–932 (2019). (PMID: 31607426684899610.1016/j.ajhg.2019.09.016) ; Wang, L. et al. Contribution of uniparental disomy in a clinical trio exome cohort of 2675 patients. Mol. Genet. Genomic Med. 9, 1792 (2021). (PMID: 10.1002/mgg3.1792) ; Molloy, B. et al. Uniparental disomy screen of Irish rare disorder cohort unmasks homozygous variants of clinical significance in the TMCO1 and PRKRA genes. Front. Genet. 13, 945296 (2022). (PMID: 36186440951579410.3389/fgene.2022.945296) ; Sasaki, K., Mishima, H., Miura, K. & Yoshiura, K. Uniparental disomy analysis in trios using genome-wide SNP array and whole-genome sequencing data imply segmental uniparental isodisomy in general populations. Gene 512, 267–274 (2013). (PMID: 2311116210.1016/j.gene.2012.10.035) ; Bruno, D. L. et al. Detection of cryptic pathogenic copy number variations and constitutional loss of heterozygosity using high resolution SNP microarray analysis in 117 patients referred for cytogenetic analysis and impact on clinical practice. J. Med. Genet. 46, 123–131 (2009). (PMID: 1901522310.1136/jmg.2008.062604) ; de Neta, A. R. C., Pinto, I. P., Da Cruz, A. S., Da Cruz, A. D. & Minasi, L. B. Longos trechos contíguos em homozigose identificados por análise cromossômica por microarranjos em uma população com deficiência intelectual e transtorno do espectro autista do Brasil Central. Conjecturas 2022, 355–367 (2022). (PMID: 10.53660/CONJ-2120-2X70) ; Sakofsky, C. J. & Malkova, A. Break induced replication in eukaryotes: Mechanisms, functions, and consequences. Crit. Rev. Biochem. Mol. Biol. 52, 395–413 (2017). (PMID: 28427283676331810.1080/10409238.2017.1314444) ; Chao, Y. et al. Promising therapeutic aspects in human genetic imprinting disorders. Clin. Epigenet. 14, 1–19 (2022). (PMID: 10.1186/s13148-022-01369-6) ; Poot, M. & Haaf, T. Mechanisms of origin, phenotypic effects and diagnostic implications of complex chromosome rearrangements. Mol. Syndromol. 6, 110–134 (2015). (PMID: 26732513469862910.1159/000438812) ; del Gaudio, D. et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 22, 1133–1141 (2020). (PMID: 3229616310.1038/s41436-020-0782-9) ; Jirtle, R. & Jirtle, R. L. Geneimprint : Genes. http://www.geneimprint.com/site/genes-by-species (2012).
  • Grant Information: 88882.438509/2019-01 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  • Contributed Indexing: Keywords: Autism; Brazil; Chromosomal microarrays; Congenital anomalies; Copy number variations; LCSH; Neurodevelopmental disorders
  • Entry Date(s): Date Created: 20240214 Date Completed: 20240216 Latest Revision: 20240218
  • Update Code: 20240219
  • PubMed Central ID: PMC10867078

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -