Zum Hauptinhalt springen

Integrating learning into animal range dynamics under rapid human-induced environmental change.

Aben, J ; Travis, JMJ ; et al.
In: Ecology letters, Jg. 27 (2024-02-01), Heft 2, S. e14367
Online academicJournal

Titel:
Integrating learning into animal range dynamics under rapid human-induced environmental change.
Autor/in / Beteiligte Person: Aben, J ; Travis, JMJ ; Van Dyck, H ; Vanwambeke, SO
Link:
Zeitschrift: Ecology letters, Jg. 27 (2024-02-01), Heft 2, S. e14367
Veröffentlichung: Oxford, UK : Blackwell Publishing ; <i>Original Publication</i>: Oxford, UK : [Paris, France] : Blackwell Science ; Centre national de la recherche scientifique, c1998-, 2024
Medientyp: academicJournal
ISSN: 1461-0248 (electronic)
DOI: 10.1111/ele.14367
Schlagwort:
  • Animals
  • Humans
  • Biological Evolution
  • Climate Change
  • Ecosystem
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Ecol Lett] 2024 Feb; Vol. 27 (2), pp. e14367.
  • MeSH Terms: Climate Change* ; Ecosystem* ; Animals ; Humans ; Biological Evolution
  • References: Agosta, S.J. & Klemens, J.A. (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecology Letters, 11, 1123-1134. ; Ahlroth, P., Alatalo, R.V., Holopainen, A., Kumpulainen, T. & Suhonen, J. (2003) Founder population size and number of source populations enhance colonization success in waterstriders. Oecologia, 137, 617-620. ; Allio, R., Nabholz, B., Wanke, S., Chomicki, G., Pérez-Escobar, O.A., Cotton, A.M. et al. (2021) Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nature Communications, 12, 1-15. ; Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury, J.J. & Chunco, A.J. (2011) Do species' traits predict recent shifts at expanding range edges? Ecology Letters, 14, 677-689. ; Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. (2011) Climate change threatens European conservation areas. Ecology Letters, 14, 484-492. ; Beissinger, S.R. & Riddell, E.A. (2021) Why are species' traits weak predictors of range shifts. Annual Review of Ecology, Evolution, and Systematics, 52, 47-66. ; Bocedi, G., Palmer, S.C., Malchow, A.K., Zurell, D., Watts, K. & Travis, J.M. (2021) RangeShifter 2.0: an extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species' responses to environmental changes. Ecography, 44, 1453-1462. ; Branco, M., Brockerhoff, E.G., Castagneyrol, B., Orazio, C. & Jactel, H. (2015) Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. Journal of Applied Ecology, 52, 69-77. ; Bras, A., Roy, A., Heckel, D.G., Anderson, P. & Karlsson Green, K. (2022) Pesticide resistance in arthropods: ecology matters too. Ecology Letters, 25, 1746-1759. ; Braschler, B. & Hill, J.K. (2007) Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. The Journal of Animal Ecology, 76, 415-423. ; Broadhead, G.T. & Raguso, R.A. (2021) Associative learning of non-sugar nectar components: amino acids modify nectar preference in a hawkmoth. Journal of Experimental Biology, 224, jeb234633. ; Brown, G.E. & Chivers, D.P. (2005) Learning as an adaptive response to predation. In: Pedro, B., & Ignacio, C. (Eds.) Ecology of Predator-Prey Interactions. Oxford, UK: Oxford University Press, pp. 34-54. ; Burns, J.G., Foucaud, J. & Mery, F. (2011) Costs of memory: lessons from ‘mini'brains. Proceedings of the Royal Society B: Biological Sciences, 278, 923-929. ; Carthey, A.J. & Banks, P.B. (2014) Naïveté in novel ecological interactions: lessons from theory and experimental evidence. Biological Reviews, 89, 932-949. ; Carthey, A.J. & Blumstein, D.T. (2018) Predicting predator recognition in a changing world. Trends in Ecology & Evolution, 33, 106-115. ; Chenard, K.C. & Duckworth, R.A. (2021) The special case of behavioral plasticity? In: Phenotypic Plasticity & Evolution. Boca Raton, Florida, USA: CRC Press, pp. 301-325. ; Chevin, L.M. & Lande, R. (2011) Adaptation to marginal habitats by evolution of increased phenotypic plasticity. Journal of Evolutionary Biology, 24, 1462-1476. ; Christiansen, I.C., Szin, S. & Schausberger, P. (2016) Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Scientific Reports, 6, 23571. ; Crone, E.E. & Schultz, C.B. (2022) Host plant limitation of butterflies in highly fragmented landscapes. Theoretical Ecology, 15, 1-11. ; Davies, T.J. & Pedersen, A.B. (2008) Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proceedings of the Royal Society B: Biological Sciences, 275, 1695-1701. ; Devictor, V., Van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J. et al. (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2, 121-124. ; Doak, P., Kareiva, P. & Kingsolver, J. (2006) Fitness consequences of choosy oviposition for a time-limited butterfly. Ecology, 87, 395-408. ; Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. (2020) Behavioural plasticity is associated with reduced extinction risk in birds. Nature Ecology & Evolution, 4, 788-793. ; Ehrlén, J. & Morris, W.F. (2015) Predicting changes in the distribution and abundance of species under environmental change. Ecology Letters, 18, 303-314. ; Evans, L.C., Sibly, R.M., Thorbek, P., Sims, I., Oliver, T.H. & Walters, R.J. (2019) Integrating the influence of weather into mechanistic models of butterfly movement. Movement Ecology, 7, 1-10. ; Ferrari, M.C., McCormick, M.I., Meekan, M.G. & Chivers, D.P. (2015) Background level of risk and the survival of predator-naive prey: can neophobia compensate for predator naivety in juvenile coral reef fishes? Proceedings of the Royal Society B: Biological Sciences, 282, 20142197. ; Fischer, E., Ghalambor, C. & Hoke, K. (2016) Plasticity and evolution in correlated suites of traits. Journal of Evolutionary Biology, 29, 991-1002. ; Fourcade, Y., WallisDeVries, M.F., Kuussaari, M., van Swaay, C.A., Heliölä, J. & Öckinger, E. (2021) Habitat amount and distribution modify community dynamics under climate change. Ecology Letters, 24, 950-957. ; Frishkoff, L.O., Karp, D.S., Flanders, J.R., Zook, J., Hadly, E.A., Daily, G.C. et al. (2016) Climate change and habitat conversion favour the same species. Ecology Letters, 19, 1081-1090. ; García-Robledo, C. & Baer, C.S. (2021) Positive genetic covariance and limited thermal tolerance constrain tropical insect responses to global warming. Journal of Evolutionary Biology, 34, 1432-1446. ; Gougherty, A.V. & Davies, T.J. (2021) Towards a phylogenetic ecology of plant pests and pathogens. Philosophical Transactions of the Royal Society B, 376, 20200359. ; Graves, S.D. & Shapiro, A.M. (2003) Exotics as host plants of the California butterfly fauna. Biological Conservation, 110, 413-433. ; Hällfors, M.H., Pöyry, J., Heliölä, J., Kohonen, I., Kuussaari, M., Leinonen, R. et al. (2021) Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecology Letters, 24, 1619-1632. ; Hodgson, J.A., Randle, Z., Shortall, C.R. & Oliver, T.H. (2022) Where and why are species' range shifts hampered by unsuitable landscapes? Global Change Biology, 28, 4765-4774. ; Hooven, N.D., Springer, M.T., Nielsen, C.K. & Schauber, E.M. (2023) Influence of natal habitat preference on habitat selection during extra-home range movements in a large ungulate. Ecology and Evolution, 13, e9794. ; Hufbauer, R., Rutschmann, A., Serrate, B., Vermeil de Conchard, H. & Facon, B. (2013) Role of propagule pressure in colonization success: disentangling the relative importance of demographic, genetic and habitat effects. Journal of Evolutionary Biology, 26, 1691-1699. ; James Reynolds, S., Ibáñez-Álamo, J.D., Sumasgutner, P. & Mainwaring, M.C. (2019) Urbanisation and nest building in birds: a review of threats and opportunities. Journal für Ornithologie, 160, 841-860. ; Jaumann, S., Scudelari, R. & Naug, D. (2013) Energetic cost of learning and memory can cause cognitive impairment in honeybees. Biology Letters, 9, 20130149. ; Kingsbury, K.M., Gillanders, B.M., Booth, D.J. & Nagelkerken, I. (2020) Trophic niche segregation allows range-extending coral reef fishes to co-exist with temperate species under climate change. Global Change Biology, 26, 721-733. ; Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I. et al. (2013) Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Current Biology, 23, 168-171. ; Lagasse, F., Moreno, C., Preat, T. & Mery, F. (2012) Functional and evolutionary trade-offs co-occur between two consolidated memory phases in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 279, 4015-4023. ; Lancaster, L.T. (2020) Host use diversification during range shifts shapes global variation in lepidopteran dietary breadth. Nature Ecology & Evolution, 4, 963-969. ; Li, P. & Wiens, J.J. (2022) What drives diversification? Range expansion tops climate, life history, habitat and size in lizards and snakes. Journal of Biogeography, 49, 237-247. ; Litt, A.R. & Pearson, D.E. (2022) A functional ecology framework for understanding and predicting animal responses to plant invasion. Biological Invasions, 24, 2693-2705. ; Littlefield, C.E., Krosby, M., Michalak, J.L. & Lawler, J.J. (2019) Connectivity for species on the move: supporting climate-driven range shifts. Frontiers in Ecology and the Environment, 17, 270-278. ; MacLean, S.A. & Beissinger, S.R. (2017) Species' traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Global Change Biology, 23, 4094-4105. ; Martin, Y., Titeux, N. & Van Dyck, H. (2021) Range expansion, habitat use, and choosiness in a butterfly under climate change: marginality and tolerance of oviposition site selection. Ecology and Evolution, 11, 2336-2345. ; Mattila, N., Kaitala, V., Komonen, A., Päivinen, J. & Kotiaho, J.S. (2011) Ecological correlates of distribution change and range shift in butterflies. Insect Conservation and Diversity, 4, 239-246. ; McGuire, T.R. & Hirsch, J. (1977) Behavior-genetic analysis of Phormia regina: conditioning, reliable individual differences, and selection. Proceedings of the National Academy of Sciences, 74, 5193-5197. ; Mery, F. & Kawecki, T.J. (2003) A fitness cost of learning ability in Drosophila melanogaster. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 2465-2469. ; Mery, F. & Kawecki, T.J. (2004) An operating cost of learning in Drosophila melanogaster. Animal Behaviour, 68, 589-598. ; Mestre, A., Poulin, R. & Hortal, J. (2020) A niche perspective on the range expansion of symbionts. Biological Reviews, 95, 491-516. ; Monaco, C.J., Bradshaw, C.J., Booth, D.J., Gillanders, B.M., Schoeman, D.S. & Nagelkerken, I. (2020) Dietary generalism accelerates arrival and persistence of coral-reef fishes in their novel ranges under climate change. Global Change Biology, 26, 5564-5573. ; Morales-Castilla, I., Pappalardo, P., Farrell, M.J., Aguirre, A.A., Huang, S., Gehman, A.-L.M. et al. (2021) Forecasting parasite sharing under climate change. Philosophical Transactions of the Royal Society B, 376, 20200360. ; Morand-Ferron, J., Hermer, E., Jones, T. & Thompson, M. (2019) Environmental variability, the value of information, and learning in winter residents. Animal Behaviour, 147, 137-145. ; Moseby, K., Carthey, A., Schroeder, T., Armstrong, D., Hayward, M., Moro, D. et al. (2015) The influence of predators and prey naivety on reintroduction success: current and future directions. In: Doug, P.A., Matthew, W.H., Dorian, M., & Philip, J. (Eds.) Advances in Reintroduction Biology of Australian and New Zealand Fauna. Clayton, Australia: CSIRO Publishing, pp. 29-42. ; Neu, A., Lötters, S., Nörenberg, L., Wiemers, M. & Fischer, K. (2021) Reduced host-plant specialization is associated with the rapid range expansion of a Mediterranean butterfly. Journal of Biogeography, 48, 3016-3031. ; Nylin, S., Agosta, S., Bensch, S., Boeger, W.A., Braga, M.P., Brooks, D.R. et al. (2018) Embracing colonizations: a new paradigm for species association dynamics. Trends in Ecology & Evolution, 33, 4-14. ; Pateman, R.M., Hill, J.K., Roy, D.B., Fox, R. & Thomas, C.D. (2012) Temperature-dependent alterations in host use drive rapid range expansion in a butterfly. Science, 336, 1028-1030. ; Pearse, I.S. & Altermatt, F. (2013) Predicting novel trophic interactions in a non-native world. Ecology Letters, 16, 1088-1094. ; Pearson, D.E., Ortega, Y.K., Eren, Ö. & Hierro, J.L. (2018) Community assembly theory as a framework for biological invasions. Trends in Ecology & Evolution, 33, 313-325. ; Pigot, A.L. & Tobias, J.A. (2013) Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters, 16, 330-338. ; Polechová, J. & Barton, N.H. (2015) Limits to adaptation along environmental gradients. Proceedings of the National Academy of Sciences, 112, 6401-6406. ; Pöyry, J., Luoto, M., Heikkinen, R.K., Kuussaari, M. & Saarinen, K. (2009) Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 15, 732-743. ; Procheş, Ş., Wilson, J.R., Richardson, D.M. & Rejmánek, M. (2008) Searching for phylogenetic pattern in biological invasions. Global Ecology and Biogeography, 17, 5-10. ; Rayfield, B., Baines, C.B., Gilarranz, L.J. & Gonzalez, A. (2023) Spread of networked populations is determined by the interplay between dispersal behavior and habitat configuration. Proceedings of the National Academy of Sciences, 120, e2201553120. ; Salo, P., Korpimäki, E., Banks, P.B., Nordström, M. & Dickman, C.R. (2007) Alien predators are more dangerous than native predators to prey populations. Proceedings of the Royal Society B: Biological Sciences, 274, 1237-1243. ; Sánchez-Hernández, J., Finstad, A.G., Arnekleiv, J.V., Kjaerstad, G. & Amundsen, P.A. (2021) Beyond ecological opportunity: prey diversity rather than abundance shapes predator niche variation. Freshwater Biology, 66, 44-61. ; Santamaría, J., Golo, R., Verdura, J., Tomas, F., Ballesteros, E., Alcoverro, T. et al. (2022) Learning takes time: biotic resistance by native herbivores increases through the invasion process. ; Sarkar, R. & Bhadra, A. (2022) How do animals navigate the urban jungle? A review of cognition in urban-adapted animals. Current Opinion in Behavioral Sciences, 46, 101177. ; Sayol, F., Sol, D. & Pigot, A.L. (2020) Brain size and life history interact to predict urban tolerance in birds. Frontiers in Ecology and Evolution, 8, 58. ; Sheehy, K.A. & Laskowski, K.L. (2023) Correlated behavioural plasticities: insights from plasticity evolution, the integrated phenotype and behavioural syndromes. Animal Behaviour, 200, 263-271. ; Shultz, S., Bradbury, B.R., Evans, L.K., Gregory, D.R. & Blackburn, M.T. (2005) Brain size and resource specialization predict long-term population trends in British birds. Proceedings of the Royal Society B: Biological Sciences, 272, 2305-2311. ; Sih, A., Stamps, J., Yang, L.H., McElreath, R. & Ramenofsky, M. (2010) Behavior as a key component of integrative biology in a human-altered world. Integrative and Comparative Biology, 50, 934-944. ; Singer, M.C. & Parmesan, C. (2020) Colonizations drive host shifts, diversification of preferences and expansion of herbivore diet breadth. BioRxiv. ; Snell-Rood, E.C. & Papaj, D.R. (2009) Patterns of phenotypic plasticity in common and rare environments: a study of host use and color learning in the cabbage white butterfly Pieris rapae. The American Naturalist, 173, 615-631. ; Snell-Rood, E.C. & Steck, M.K. (2019) Behaviour shapes environmental variation and selection on learning and plasticity: review of mechanisms and implications. Animal Behaviour, 147, 147-156. ; Sol, D., Duncan, R.P., Blackburn, T.M., Cassey, P. & Lefebvre, L. (2005) Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences, 102, 5460-5465. ; Sol, D., Lapiedra, O. & González-Lagos, C. (2013) Behavioural adjustments for a life in the city. Animal Behaviour, 85, 1101-1112. ; Steindler, L.A., Blumstein, D.T., West, R., Moseby, K.E. & Letnic, M. (2020) Exposure to a novel predator induces visual predator recognition by naïve prey. Behavioral Ecology and Sociobiology, 74, 1-13. ; Sutter, M. & Kawecki, T. (2009) Influence of learning on range expansion and adaptation to novel habitats. Journal of Evolutionary Biology, 22, 2201-2214. ; Szabo, B., Damas-Moreira, I. & Whiting, M.J. (2020) Can cognitive ability give invasive species the means to succeed? A review of the evidence. Frontiers in Ecology and Evolution, 8, 187. ; Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C. et al. (2004) Extinction risk from climate change. Nature, 427, 145-148. ; Thomas, C.D. & Lennon, J.J. (1999) Birds extend their ranges northwards. Nature, 399, 213. ; Usinowicz, J. & O'Connor, M.I. (2023) The fitness value of ecological information in a variable world. Ecology Letters, 26, 621-639. ; Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer, L., Benito-Garzón, M. et al. (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17, 1351-1364. ; Wellenreuther, M., Dudaniec, R.Y., Neu, A., Lessard, J.-P., Bridle, J., Carbonell, J.A. et al. (2022) The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. Current Opinion in Insect Science, 52, 100939. ; Yeh, P.J. & Price, T.D. (2004) Adaptive phenotypic plasticity and the successful colonization of a novel environment. The American Naturalist, 164, 531-542. ; Zeigler, S.L. & Fagan, W.F. (2014) Transient windows for connectivity in a changing world. Movement Ecology, 2, 1-10.
  • Grant Information: ARC-Research Grant 17/22-086 ARC, Collective Research Initiatives
  • Contributed Indexing: Keywords: behavioural plasticity; ecological fitting; human-induced rapid environmental change; learning; mechanistic population model; range shift
  • Entry Date(s): Date Created: 20240216 Date Completed: 20240219 Latest Revision: 20240219
  • Update Code: 20240219

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -