Zum Hauptinhalt springen

NeuroIGN: Explainable Multimodal Image-Guided System for Precise Brain Tumor Surgery.

Zeineldin, RA ; Karar, ME ; et al.
In: Journal of medical systems, Jg. 48 (2024-02-23), Heft 1, S. 25
Online academicJournal

Titel:
NeuroIGN: Explainable Multimodal Image-Guided System for Precise Brain Tumor Surgery.
Autor/in / Beteiligte Person: Zeineldin, RA ; Karar, ME ; Burgert, O ; Mathis-Ullrich, F
Link:
Zeitschrift: Journal of medical systems, Jg. 48 (2024-02-23), Heft 1, S. 25
Veröffentlichung: 1999- : New York, NY : Kluwer Academic/Plenum Publishers ; <i>Original Publication</i>: New York, Plenum Press., 2024
Medientyp: academicJournal
ISSN: 1573-689X (electronic)
DOI: 10.1007/s10916-024-02037-3
Schlagwort:
  • Humans
  • Neuronavigation methods
  • Neurosurgical Procedures methods
  • Ultrasonography
  • Magnetic Resonance Imaging methods
  • Brain Neoplasms diagnostic imaging
  • Brain Neoplasms surgery
  • Brain Neoplasms pathology
  • Surgery, Computer-Assisted methods
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Med Syst] 2024 Feb 23; Vol. 48 (1), pp. 25. <i>Date of Electronic Publication: </i>2024 Feb 23.
  • MeSH Terms: Brain Neoplasms* / diagnostic imaging ; Brain Neoplasms* / surgery ; Brain Neoplasms* / pathology ; Surgery, Computer-Assisted* / methods ; Humans ; Neuronavigation / methods ; Neurosurgical Procedures / methods ; Ultrasonography ; Magnetic Resonance Imaging / methods
  • References: Schipmann-Miletić S, Stummer W (2020) Image-Guided Brain Surgery. In: Molecular Imaging in Oncology. Recent Results in Cancer Research. pp 813–841. https://doi.org/10.1007/978-3-030-42618-7_26. ; Miner RC (2017) Image-Guided Neurosurgery. J Med Imaging Radiat Sci 48 (4):328–335. https://doi.org/10.1016/j.jmir.2017.06.005. (PMID: 10.1016/j.jmir.2017.06.00531047466) ; Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115 (1):3–8. https://doi.org/10.3171/2011.2.jns10998. (PMID: 10.3171/2011.2.jns1099821417701) ; Hervey-Jumper SL, Berger MS (2016) Maximizing safe resection of low- and high-grade glioma. J Neurooncol 130 (2):269–282. https://doi.org/10.1007/s11060-016-2110-4. (PMID: 10.1007/s11060-016-2110-427174197) ; Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC et al. (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30 (9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001. (PMID: 10.1016/j.mri.2012.05.001227706903466397) ; Goch CJ, Metzger J, Nolden M (2017) Abstract: Medical Research Data Management Using MITK and XNAT. In: Bildverarbeitung für die Medizin 2017. Informatik aktuell. pp 305–305. https://doi.org/10.1007/978-3-662-54345-0_68. ; Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S et al. (2006) User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 31 (3):1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015. (PMID: 10.1016/j.neuroimage.2006.01.01516545965) ; Ungi T, Lasso A, Fichtinger G (2016) Open-source platforms for navigated image-guided interventions. Med Image Anal 33:181–186. https://doi.org/10.1016/j.media.2016.06.011. (PMID: 10.1016/j.media.2016.06.01127344106) ; Clarkson MJ, Zombori G, Thompson S, Totz J, Song Y et al. (2015) The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging. Int J Comput Assist Radiol Surg 10 (3):301–316. https://doi.org/10.1007/s11548-014-1124-7. (PMID: 10.1007/s11548-014-1124-725408304) ; Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L et al. (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot 5 (4):423–434. https://doi.org/10.1002/rcs.274. (PMID: 10.1002/rcs.274196213342811069) ; Lasso A, Heffter T, Rankin A, Pinter C, Ungi T et al. (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61 (10):2527–2537. https://doi.org/10.1109/TBME.2014.2322864. (PMID: 10.1109/TBME.2014.2322864248334124437531) ; Drouin S, Kochanowska A, Kersten-Oertel M, Gerard IJ, Zelmann R et al. (2017) IBIS: an OR ready open-source platform for image-guided neurosurgery. Int J Comput Assist Radiol Surg 12 (3):363–378. https://doi.org/10.1007/s11548-016-1478-0. (PMID: 10.1007/s11548-016-1478-027581336) ; Askeland C, Solberg OV, Bakeng JB, Reinertsen I, Tangen GA et al. (2016) CustusX: an open-source research platform for image-guided therapy. Int J Comput Assist Radiol Surg 11 (4):505–519. https://doi.org/10.1007/s11548-015-1292-0. (PMID: 10.1007/s11548-015-1292-026410841) ; Serte S, Serener A, Al-Turjman F (2020) Deep learning in medical imaging: A brief review. Transactions on Emerging Telecommunications Technologies 33 (10). https://doi.org/10.1002/ett.4080. (PMID: 10.1002/ett.4080) ; Chen X, Wang X, Zhang K, Fung K-M, Thai TC et al. (2022) Recent advances and clinical applications of deep learning in medical image analysis. Medical Image Analysis 79. https://doi.org/10.1016/j.media.2022.102444. (PMID: 10.1016/j.media.2022.102444354728449156578) ; Kv R, Prasad K, Peralam Yegneswaran P (2023) Segmentation and Classification Approaches of Clinically Relevant Curvilinear Structures: A Review. Journal of Medical Systems 47 (1). https://doi.org/10.1007/s10916-023-01927-2 . (PMID: 10.1007/s10916-023-01927-23697185210042761) ; Bierbrier J, Eskandari M, Di Giovanni DA, Collins DL (2023) Towards Estimating MRI-Ultrasound Registration Error in Image-Guided Neurosurgery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control:1–1. https://doi.org/10.1109/tuffc.2023.3239320. ; Pirhadi A, Salari S, Ahmad MO, Rivaz H, Xiao Y (2022) Robust landmark-based brain shift correction with a Siamese neural network in ultrasound-guided brain tumor resection. International Journal of Computer Assisted Radiology and Surgery. https://doi.org/10.1007/s11548-022-02770-5. (PMID: 10.1007/s11548-022-02770-536306056) ; Zeineldin RA, Karar ME, Elshaer Z, Coburger J, Wirtz CR et al. (2022) Explainability of deep neural networks for MRI analysis of brain tumors. Int J Comput Assist Radiol Surg 17 (9):1673–1683. https://doi.org/10.1007/s11548-022-02619-x. (PMID: 10.1007/s11548-022-02619-x354600199463287) ; van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA (2022) Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Medical Image Analysis 79. https://doi.org/10.1016/j.media.2022.102470 . (PMID: 10.1016/j.media.2022.10247035576821) ; Lalithadevi B, Krishnaveni S, Gnanadurai JSC (2023) A Feasibility Study of Diabetic Retinopathy Detection in Type II Diabetic Patients Based on Explainable Artificial Intelligence. Journal of Medical Systems 47 (1). https://doi.org/10.1007/s10916-023-01976-7 . (PMID: 10.1007/s10916-023-01976-737552340) ; Pesapane F, Volonte C, Codari M, Sardanelli F (2018) Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights Imaging 9 (5):745–753. https://doi.org/10.1007/s13244-018-0645-y. (PMID: 10.1007/s13244-018-0645-y301126756206380) ; Zeineldin RA, Karar ME, Coburger J, Wirtz CR, Burgert O (2020) DeepSeg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images. Int J Comput Assist Radiol Surg 15 (6):909–920. https://doi.org/10.1007/s11548-020-02186-z. (PMID: 10.1007/s11548-020-02186-z323723867303084) ; Zeineldin RA, Karar ME, Burgert O, Mathis-Ullrich F (2022) Multimodal CNN Networks for Brain Tumor Segmentation in MRI: A BraTS 2022 Challenge Solution.arXiv:2212.09310. https://doi.org/10.48550/arXiv.2212.09310. ; Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K et al. (2015) The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 34 (10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694. (PMID: 10.1109/TMI.2014.237769425494501) ; Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M et al. (2017) Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4 (1):170117. https://doi.org/10.1038/sdata.2017.117. (PMID: 10.1038/sdata.2017.117288726345685212) ; Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M et al. (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:181102629. ; Baid U, Ghodasara S, Bilello M, Mohan S, Calabrese E et al. (2021) The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification.  https://arxiv.org/abs/2107.02314. ; Shapey J, Dowrick T, Delaunay R, Mackle EC, Thompson S et al. (2021) Integrated multi-modality image-guided navigation for neurosurgery: open-source software platform using state-of-the-art clinical hardware. International Journal of Computer Assisted Radiology and Surgery 16 (8):1347–1356. https://doi.org/10.1007/s11548-021-02374-5. (PMID: 10.1007/s11548-021-02374-5339379668295168)
  • Grant Information: 91705803 Deutscher Akademischer Austausch Dienst Kairo
  • Contributed Indexing: Keywords: Deep learning; Explainability; IGN; MRI; Neuronavigation; iUS
  • Entry Date(s): Date Created: 20240223 Date Completed: 20240226 Latest Revision: 20240226
  • Update Code: 20240226

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -