Zum Hauptinhalt springen

Automated model building and protein identification in cryo-EM maps.

Jamali, K ; Käll, L ; et al.
In: Nature, Jg. 628 (2024-04-01), Heft 8007, S. 450-457
academicJournal

Titel:
Automated model building and protein identification in cryo-EM maps.
Autor/in / Beteiligte Person: Jamali, K ; Käll, L ; Zhang, R ; Brown, A ; Kimanius, D ; Scheres, SHW
Zeitschrift: Nature, Jg. 628 (2024-04-01), Heft 8007, S. 450-457
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2024
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-024-07215-4
Schlagwort:
  • Amino Acid Sequence
  • Markov Chains
  • Neural Networks, Computer
  • Protein Conformation
  • Computer Graphics
  • Cryoelectron Microscopy methods
  • Cryoelectron Microscopy standards
  • Machine Learning
  • Models, Molecular
  • Proteins chemistry
  • Proteins ultrastructure
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Comparative Study; Journal Article
  • Language: English
  • [Nature] 2024 Apr; Vol. 628 (8007), pp. 450-457. <i>Date of Electronic Publication: </i>2024 Feb 26.
  • MeSH Terms: Cryoelectron Microscopy* / methods ; Cryoelectron Microscopy* / standards ; Machine Learning* ; Models, Molecular* ; Proteins* / chemistry ; Proteins* / ultrastructure ; Amino Acid Sequence ; Markov Chains ; Neural Networks, Computer ; Protein Conformation ; Computer Graphics
  • Comments: Update of: bioRxiv. 2023 Oct 17;:. (PMID: 37292681)
  • References: Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D 66, 486–501 (2010). (PMID: 20383002285231310.1107/S0907444910007493) ; Croll, T. I. Isolde: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018). (PMID: 10.1107/S2059798318002425) ; Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020). (PMID: 33087931761107310.1038/s41586-020-2829-0) ; Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020). (PMID: 3308792710.1038/s41586-020-2833-4) ; Lawson, C. L. et al. EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 44, D396–D403 (2016). (PMID: 2657857610.1093/nar/gkv1126) ; Russo, C. J., Dickerson, J. L. & Naydenova, K. Cryomicroscopy in situ: what is the smallest molecule that can be directly identified without labels in a cell? Faraday Discuss. 240, 277–302 (2022). (PMID: 35913392964200810.1039/D2FD00076H) ; Gao, Y., Thorn, V. & Thorn, A. Errors in structural biology are not the exception. Acta Crystallogr. D 79, 206–211 (2023). (PMID: 10.1107/S2059798322011901) ; Croll, T. I. et al. Making the invisible enemy visible. Nat. Struct. Mol. Biol. 28, 404–408 (2021). (PMID: 33972785834056410.1038/s41594-021-00593-7) ; Schweighauser, M. et al. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 605, 310–314 (2022). (PMID: 35344985909548210.1038/s41586-022-04650-z) ; Jiang, Y. X. et al. Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43. Nature 605, 304–309 (2022). (PMID: 35344984984499310.1038/s41586-022-04670-9) ; Chang, A. et al. Homotypic fibrillization of tmem106b across diverse neurodegenerative diseases. Cell 185, 1346–1355 (2022). (PMID: 35247328901856310.1016/j.cell.2022.02.026) ; Gui, M. et al. Structures of radial spokes and associated complexes important for ciliary motility. Nat. Struct. Mol. Biol. 28, 29–37 (2021). (PMID: 3331870310.1038/s41594-020-00530-0) ; Gui, M., Wang, X., Dutcher, S. K., Brown, A. & Zhang, R. Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nat. Struct. Mol. Biol. 29, 483–492 (2022). (PMID: 35578023993091410.1038/s41594-022-00770-2) ; Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023). (PMID: 3692703110.1126/science.ade2574) ; Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 34265844837160510.1038/s41586-021-03819-2) ; Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022). (PMID: 3479137110.1093/nar/gkab1061) ; Oeffner, R. D. et al. Putting AlphaFold models to work with phenix.process_predicted_model and ISOLDE. Acta Crystallogr. D 78, 1303–1314 (2022). (PMID: 10.1107/S2059798322010026) ; Terashi, G. & Kihara, D. De novo main-chain modeling for EM maps using MAINMAST. Nat. Commun. 9, 1618 (2018). (PMID: 29691408591542910.1038/s41467-018-04053-7) ; Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr. D 75, 861–877 (2019). (PMID: 10.1107/S2059798319011471) ; Hoh, S. W., Burnley, T. & Cowtan, K. Current approaches for automated model building into cryo-EM maps using buccaneer with CCP-EM. Acta Crystallogr. D 76, 531–541 (2020). (PMID: 10.1107/S2059798320005513) ; Pfab, J., Phan, N. M. & Si, D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc. Natl Acad. Sci. USA 118, e2017525118 (2021). (PMID: 3336133210.1073/pnas.2017525118) ; Zhang, X., Zhang, B., Freddolino, P. L. & Zhang, Y. CR-I-Tasser: assemble protein structures from cryo-EM density maps using deep convolutional neural networks. Nat. Methods 19, 195–204 (2022). (PMID: 35132244885234710.1038/s41592-021-01389-9) ; He, J., Lin, P., Chen, J., Cao, H. & Huang, S.-Y. Model building of protein complexes from intermediate-resolution cryo-EM maps with deep learning-guided automatic assembly. Nat. Commun. 13, 4066 (2022). (PMID: 35831370927937110.1038/s41467-022-31748-9) ; Nakamura, A. et al. Fast and automated protein-DNA/RNA macromolecular complex modeling from cryo-EM maps. Brief. Bioinform. 24, bbac632 (2023). (PMID: 366820031039928410.1093/bib/bbac632) ; Chojnowski, G. et al. findMySequence: a neural-network-based approach for identification of unknown proteins in x-ray crystallography and cryo-EM. IUCrJ 9, 86–97 (2022). (PMID: 3505921310.1107/S2052252521011088) ; Chang, L. et al. DeepTracer-id: de novo protein identification from cryo-EM maps. Biophys. J. 121, 2840–2848 (2022). (PMID: 35769006938838110.1016/j.bpj.2022.06.025) ; Terwilliger, T. C. et al. Protein identification from electron cryomicroscopy maps by automated model building and sidechain matching. Acta Crystallogr. D 77, 457–462 (2021). (PMID: 10.1107/S2059798321001765) ; Jamali, K., Kimanius, D. & Scheres, S. H. A graph neural network approach to automated model building in cryo-EM maps. In Proc. Eleventh International Conference on Learning Representations (2023); openreview.net/forum?id=65XDF_nwI61 . ; Lin, T.-Y. et al. Feature pyramid networks for object detection. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2117–2125 (IEEE, 2017). ; Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) (NeurIPS, 2017). ; Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021). (PMID: 33876751805394310.1073/pnas.2016239118) ; Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: Hmmer3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013). (PMID: 23598997369551310.1093/nar/gkt263) ; Krogh, A., Brown, M., Mian, I. S., Sjölander, K. & Haussler, D. Hidden markov models in computational biology: applications to protein modeling. J. Mol. Biol. 235, 1501–1531 (1994). (PMID: 810708910.1006/jmbi.1994.1104) ; Eddy, S. R. Accelerated profile hmm searches. PLoS Comput. Biol. 7, e1002195 (2011). (PMID: 22039361319763410.1371/journal.pcbi.1002195) ; Remmert, M., Biegert, A., Hauser, A. & Söding, J. Hhblits: lightning-fast iterative protein sequence searching by hmm-hmm alignment. Nat. Methods 9, 173–175 (2012). (PMID: 10.1038/nmeth.1818) ; Burley, S. K. et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49, D437–D451 (2021). (PMID: 3321185410.1093/nar/gkaa1038) ; Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure refinement and map calculation using servalcat. Acta Crystallogr. D 77, 1282–1291 (2021). (PMID: 10.1107/S2059798321009475) ; Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps with q-scores. Nat. Methods 17, 328–334 (2020). (PMID: 32042190744655610.1038/s41592-020-0731-1) ; Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-em density maps. Nat. Methods 11, 63–65 (2014). (PMID: 2421316610.1038/nmeth.2727) ; Liebschner, D. et al. Macromolecular structure determination using x-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019). (PMID: 10.1107/S2059798319011471) ; Zhou, X. et al. Progressive assembly of multi-domain protein structures from cryo-em density maps. Nat. Comput. Sci. 2, 265–275 (2022). (PMID: 35844960928120110.1038/s43588-022-00232-1) ; Park, J.-U. et al. Structures of the holo CRISPR RNA-guided transposon integration complex. Nature 613, 775–782 (2023). (PMID: 3644250310.1038/s41586-022-05573-5) ; Lorenz, R. et al. Vienna RNA package 2.0. Algorithms Mol. Biol. 6, 26 (2011). (PMID: 22115189331942910.1186/1748-7188-6-26) ; Wang, X., Terashi, G. & Kihara, D. CryoREAD: de novo structure modeling for nucleic acids in cryo-EM maps using deep learning. Nat. Methods 20, 1739–1747 (2023). ; You, X. et al. In situ structure of the red algal phycobilisome–PSII–PSI–LHC megacomplex. Nature 616, 199–206 (2023). ; Lee, J., Kim, D., Bhattacharya, D. & Yoon, H. S. Expansion of phycobilisome linker gene families in mesophilic red algae. Nat. Commun. 10, 4823 (2019). (PMID: 31645564681154710.1038/s41467-019-12779-1) ; Mirdita, M. et al. Colabfold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022). (PMID: 35637307918428110.1038/s41592-022-01488-1) ; Craig, R. J. et al. The chlamydomonas genome project, version 6: reference assemblies for mating-type plus and minus strains reveal extensive structural mutation in the laboratory. Plant Cell 35, 644–672 (2023). (PMID: 3656273010.1093/plcell/koac347) ; Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021). (PMID: 34267316828284710.1038/s42003-021-02399-1) ; He, J., Li, T. & Huang, S.-Y. Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat. Commun. 14, 3217 (2023). (PMID: 372706351023947410.1038/s41467-023-39031-1) ; He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016). ; Tsai, K. et al. Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics. Nat. Struct. Mol. Biol. 29, 162–171 (2022). (PMID: 35165456890628210.1038/s41594-022-00723-9) ; Chen, X. et al. Symbolic discovery of optimization algorithms. In Proc. Thirty-Seventh Conference on Neural Information Processing Systems (2023); openreview.net/forum?id=ne6zeqLFCZ. ; Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014). ; Afonine, P. V. et al. Real-space refinement in phenix for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018). (PMID: 10.1107/S2059798318006551)
  • Grant Information: R01 GM138854 United States GM NIGMS NIH HHS; R01 GM141109 United States GM NIGMS NIH HHS
  • Substance Nomenclature: 0 (Proteins)
  • Entry Date(s): Date Created: 20240226 Date Completed: 20240412 Latest Revision: 20240427
  • Update Code: 20240428
  • PubMed Central ID: PMC11006616

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -