Zum Hauptinhalt springen

Brain N -acetyl-aspartyl-glutamate is associated with cognitive function in older virally suppressed people with HIV.

Wiseman, RL ; Bigos, KL ; et al.
In: AIDS (London, England), Jg. 38 (2024-06-01), Heft 7, S. 1003-1011
academicJournal

Titel:
Brain N -acetyl-aspartyl-glutamate is associated with cognitive function in older virally suppressed people with HIV.
Autor/in / Beteiligte Person: Wiseman, RL ; Bigos, KL ; Dastgheyb, RM ; Barker, PB ; Rubin, LH ; Slusher, BS
Zeitschrift: AIDS (London, England), Jg. 38 (2024-06-01), Heft 7, S. 1003-1011
Veröffentlichung: 1998- : London, England : Lippincott Williams & Wilkins ; <i>Original Publication</i>: London : Gower Academic Journals, c1987-, 2024
Medientyp: academicJournal
ISSN: 1473-5571 (electronic)
DOI: 10.1097/QAD.0000000000003871
Schlagwort:
  • Humans
  • Male
  • Middle Aged
  • Female
  • Retrospective Studies
  • Aged
  • Magnetic Resonance Spectroscopy
  • Cognition
  • Cognitive Dysfunction metabolism
  • Sustained Virologic Response
  • HIV Infections complications
  • HIV Infections drug therapy
  • HIV Infections psychology
  • Brain metabolism
  • Dipeptides
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • Language: English
  • [AIDS] 2024 Jun 01; Vol. 38 (7), pp. 1003-1011. <i>Date of Electronic Publication: </i>2024 Feb 21.
  • MeSH Terms: HIV Infections* / complications ; HIV Infections* / drug therapy ; HIV Infections* / psychology ; Brain* / metabolism ; Dipeptides* ; Humans ; Male ; Middle Aged ; Female ; Retrospective Studies ; Aged ; Magnetic Resonance Spectroscopy ; Cognition ; Cognitive Dysfunction / metabolism ; Sustained Virologic Response
  • References: Kemnic TR, Gulick PG. HIV antiretroviral therapy. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright (2023, StatPearls Publishing LLC). 2023. ; Wei J, Hou J, Su B, Jiang T, Guo C, Wang W, et al. The prevalence of Frascati-Criteria-based HIV-associated neurocognitive disorder (HAND) in HIV-infected adults: a systematic review and meta-analysis . Front Neurol 2020; 11:581346. ; Wang Y, Liu M, Lu Q, Farrell M, Lappin JM, Shi J, et al. Global prevalence and burden of HIV-associated neurocognitive disorder: a meta-analysis . Neurology 2020; 95:e2610–e2621. ; Keng LD, Winston A, Sabin CA. The global burden of cognitive impairment in people with HIV . AIDS 2023; 37:61–70. ; Valcour V, Paul R, Neuhaus J, Shikuma C. The effects of age and HIV on neuropsychological performance . J Int Neuropsychol Soc 2011; 17:190–195. ; Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes O, et al. Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 Cohort . Neurology 2004; 63:822–827. ; Pfefferbaum A, Rogosa DA, Rosenbloom MJ, Chu W, Sassoon SA, Kemper CA, et al. Accelerated aging of selective brain structures in human immunodeficiency virus infection: a controlled, longitudinal magnetic resonance imaging study . Neurobiol Aging 2014; 35:1755–1768. ; Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R. HIV-1 target cells in the CNS . J Neurovirol 2015; 21:276–289. ; Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus . Virus Res 2005; 111:194–213. ; Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, et al. Neuroinflammation in treated HIV-positive individuals: a TSPO PET study . Neurology 2016; 86:1425–1432. ; Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, Coughlin JM. Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy . AIDS 2018; 32:1661–1667. ; Rubin LH, Du Y, Sweeney SE, O’Toole R, Harrington CK, Jenkins K, et al. Pilot imaging of the colony stimulating factor 1 receptor in the brains of virally-suppressed individuals with HIV . AIDS 2023; 37:1419–1424. ; Sanford R, Fellows LK, Ances BM, Collins DL. Association of brain structure changes and cognitive function with combination antiretroviral therapy in HIV-positive individuals . JAMA Neurol 2018; 75:72–79. ; Heyes MP, Ellis RJ, Ryan L, Childers ME, Grant I, Wolfson T, et al. HNRC Group. Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection . Brain 2001; 124 (Pt 5):1033–1042. ; Potter MC, Figuera-Losada M, Rojas C, Slusher BS. Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders . J Neuroimmune Pharmacol 2013; 8:594–607. ; Bernards C, Akers T. Effect of postinjury intravenous or intrathecal methylprednisolone on spinal cord excitatory amino-acid release, nitric oxide generation, PGE2 synthesis, and myeloperoxidase content in a pig model of acute spinal cord injury . Spinal Cord 2006; 44:594–604. ; Faden AI, Demediuk P, Panter SS, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury . Science 1989; 244:798–800. ; McManigle JE, Taveira DaSilva AM, Dretchen KL, Gillis RA. Potentiation of MK-801-induced breathing impairment by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline . Eur J Pharmacol 1994; 252:11–17. ; Pohl D, Bittigau P, Ishimaru MJ, Stadthaus D, Hübner C, Olney JW, et al. N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain . Proc Natl Acad Sci U S A 1999; 96:2508–2513. ; Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain . Science 1999; 283:70–74. ; Ikonomidou C, Stefovska V, Turski L. Neuronal death enhanced by N-methyl-D-aspartate antagonists . Proc Natl Acad Sci U S A 2000; 97:12885–12890. ; Albers GW, Clark WM, Atkinson RP, Madden K, Data JL, Whitehouse MJ. Dose escalation study of the NMDA glycine-site antagonist licostinel in acute ischemic stroke . Stroke 1999; 30:508–513. ; Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, et al. Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist . Stroke 2000; 31:347–354. ; Lees KR, Asplund K, Carolei A, Davis SM, Diener HC, Kaste M, et al. Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: a randomised controlled trial. GAIN International Investigators . Lancet 2000; 355:1949–1954. ; Albers GW, Goldstein LB, Hall D, Lesko LM. Investigators ftAAS. Aptiganel hydrochloride in acute ischemic stroke. A randomized controlled trial . JAMA 2001; 286:2673–2682. ; Ghadge GD, Slusher BS, Bodner A, Canto MD, Wozniak K, Thomas AG, et al. Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models . Proc Natl Acad Sci U S A 2003; 100:9554–9559. ; Slusher BS, Vornov JJ, Thomas AG, Hurn PD, Harukuni I, Bhardwaj A, et al. Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury . Nat Med 1999; 5:1396–1402. ; Zhang W, Zhang Z, Wu L, Qiu Y, Lin Y. Suppression of glutamate carboxypeptidase II ameliorates neuronal apoptosis from ischemic brain injury . J Stroke Cerebrovasc Dis 2016; 25:1599–1605. ; Zhong C, Zhao X, Sarva J, Kozikowski A, Neale JH, Lyeth BG. NAAG peptidase inhibitor reduces acute neuronal degeneration and astrocyte damage following lateral fluid percussion TBI in rats . J Neurotrauma 2005; 22:266–276. ; Zhang Z, Bassam B, Thomas AG, Williams M, Liu J, Nance E, et al. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain . Neurobiol Dis 2016; 94:116–128. ; Hollinger KR, Sharma A, Tallon C, Lovell L, Thomas AG, Zhu X, et al. Dendrimer-2PMPA selectively blocks upregulated microglial GCPII activity and improves cognition in a mouse model of multiple sclerosis . Nanotheranostics 2022; 6:126–142. ; Yang S, Datta D, Elizabeth W, Duque A, Morozov YM, Arellano J, et al. Inhibition of glutamate-carboxypeptidase-II in dorsolateral prefrontal cortex: potential therapeutic target for neuroinflammatory cognitive disorders . Mol Psychiatry 2022; 27:4252–4263. ; Tamaru Y, Nomura S, Mizuno N, Shigemoto R. Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre and postsynaptic sites . Neuroscience 2001; 106:481–503. ; Mazzitelli M, Palazzo E, Maione S, Neugebauer V. Group II metabotropic glutamate receptors: role in pain mechanisms and pain modulation . Front Mol Neurosci 2018; 11:383. ; Hlouchova K, Barinka C, Konvalinka J, Lubkowski J. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III . FEBS J 2009; 276:4448–4462. ; Amy FT, Arnsten PhD, Min Wang PhD. The evolutionary expansion of mGluR3-NAAG-GCPII signaling: relevance to human intelligence and cognitive disorders . Am J Psychiatry 2020; 177:1103–1106. ; Lam M, Trampush JW, Yu J, Knowles E, Davies G, Liewald DC, et al. Large-scale cognitive GWAS meta-analysis reveals tissue-specific neural expression and potential nootropic drug targets . Cell Rep 2017; 21:2597–2613. ; Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia . Proc Natl Acad Sci U S A 2004; 101:12604–12609. ; Datta D, Leslie SN, Woo E, Amancharla N, Elmansy A, Lepe M, et al. Glutamate carboxypeptidase II in aging rat prefrontal cortex impairs working memory performance . Front Aging Neurosci 2021; 13:760270. ; Jin LE, Wang M, Galvin VC, Lightbourne TC, Conn PJ, Arnsten AFT, Paspalas CD. mGluR2 versus mGluR3 metabotropic glutamate receptors in primate dorsolateral prefrontal cortex: postsynaptic mGluR3 strengthen working memory networks . Cereb Cortex 2017; 28:974–987. ; Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic stress weakens connectivity in the prefrontal cortex: architectural and molecular changes . Chronic Stress (Thousand Oaks) 2021; 5:24705470211029254. ; Zhong C, Zhao X, Van KC, Bzdega T, Smyth A, Zhou J, et al. NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat . J Neurochem 2006; 97:1015–1025. ; Nonaka T, Yamada T, Ishimura T, Zuo D, Moffett JR, Neale JH, Yamamoto T. A role for the locus coeruleus in the analgesic efficacy of N-acetylaspartylglutamate peptidase (GCPII) inhibitors ZJ43 and 2-PMPA . Mol Pain 2017; 13:1744806917697008. ; Rais R, Vávra J, Tichý T, Dash RP, Gadiano AJ, Tenora L, et al. Discovery of a para-acetoxy-benzyl ester prodrug of a hydroxamate-based glutamate carboxypeptidase II inhibitor as oral therapy for neuropathic pain . J Med Chem 2017; 60:7799–7809. ; Wozniak KM, Wu Y, Vornov JJ, Lapidus R, Rais R, Rojas C, et al. The orally active glutamate carboxypeptidase II inhibitor E2072 exhibits sustained nerve exposure and attenuates peripheral neuropathy . J Pharmacol Exp Ther 2012; 343:746–754. ; Zuo D, Bzdega T, Olszewski RT, Moffett JR, Neale JH. Effects of N-acetylaspartylglutamate (NAAG) peptidase inhibition on release of glutamate and dopamine in prefrontal cortex and nucleus accumbens in phencyclidine model of schizophrenia . J Biol Chem 2012; 287:21773–21782. ; Xi ZX, Li X, Peng XQ, Li J, Chun L, Gardner EL, et al. Inhibition of NAALADase by 2-PMPA attenuates cocaine-induced relapse in rats: a NAAG-mGluR2/3-mediated mechanism . J Neurochem 2010; 112:564–576. ; Tallon C, Sharma A, Zhang Z, Thomas AG, Ng J, Zhu X, et al. Dendrimer-2PMPA delays muscle function loss and denervation in a murine model of amyotrophic lateral sclerosis . Neurotherapeutics 2022; 19:274–288. ; Olszewski RT, Janczura KJ, Ball SR, Madore JC, Lavin KM, Lee JC, et al. NAAG peptidase inhibitors block cognitive deficit induced by MK-801 and motor activation induced by d-amphetamine in animal models of schizophrenia . Transl Psychiatry 2012; 2:e145. ; Gurkoff GG, Feng J-F, Van KC, Izadi A, Ghiasvand R, Shahlaie K, et al. NAAG peptidase inhibitor improves motor function and reduces cognitive dysfunction in a model of TBI with secondary hypoxia . Brain Res 2013; 1515:98–107. ; Rahn KA, Watkins CC, Alt J, Rais R, Stathis M, Grishkan I, et al. Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis . Proc Natl Acad Sci U S A 2012; 109:20101–20106. ; Vornov JJ, Hollinger KR, Jackson PF, Wozniak KM, Farah MH, Majer P, et al. Still NAAG’ing after all these years: the continuing pursuit of GCPII inhibitors . Adv Pharmacol 2016; 76:215–255. ; Becker I, Wang-Eckhardt L, Lodder-Gadaczek J, Wang Y, Grünewald A, Eckhardt M. Mice deficient in the NAAG synthetase II gene Rimkla are impaired in a novel object recognition task . J Neurochem 2021; 157:2008–2023. ; Wang AM, Pradhan S, Coughlin JM, Trivedi A, DuBois SL, Crawford JL, et al. Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis . JAMA Psychiatry 2019; 76:314–323. ; Pradhan S, Bonekamp S, Gillen JS, Rowland LM, Wijtenburg SA, Edden RA, Barker PB. Comparison of single voxel brain MRS AT 3T and 7T using 32-channel head coils . Magn Reson Imaging 2015; 33:1013–1018. ; Neale JH, Yamamoto T. N-acetylaspartylglutamate (NAAG) and glutamate carboxypeptidase II: an abundant peptide neurotransmitter-enzyme system with multiple clinical applications . Prog Neurobiol 2020; 184:101722. ; Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology . Prog Neurobiol 2007; 81:89–131. ; Zink CF, Barker PB, Sawa A, Weinberger DR, Wang M, Quillian H, et al. Association of missense mutation in FOLH1 with decreased NAAG levels and impaired working memory circuitry and cognition . Am J Psychiatry 2020; 177:1129–1139. ; Jessen F, Fingerhut N, Sprinkart AM, Kühn K-U, Petrovsky N, Maier W, et al. N-Acetylaspartylglutamate (NAAG) and N-acetylaspartate (NAA) in patients with schizophrenia . Schizophr Bull 2011; 39:197–205. ; Su T, Schouten J, Geurtsen GJ, Wit FW, Stolte IG, Prins M, et al. AGEhIV Cohort Study Group. Multivariate normative comparison, a novel method for more reliably detecting cognitive impairment in HIV infection . Aids 2015; 29:547–557. ; Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. CHARTER Group, HNRC Group. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors . J Neurovirol 2011; 17:3–16. ; Woods SP, Weber E, Weisz BM, Twamley EW, Grant I. HIV Neurobehavioral Research Programs Group. Prospective memory deficits are associated with unemployment in persons living with HIV infection . Rehabil Psychol 2011; 56:77–84. ; Mohamed M, Barker PB, Skolasky RL, Sacktor N. 7T Brain MRS in HIV infection: correlation with cognitive impairment and performance on neuropsychological tests . AJNR Am J Neuroradiol 2018; 39:704–712. ; Mohamed M, Skolasky RL, Zhou Y, Ye W, Brasic JR, Brown A, et al. Beta-amyloid (Abeta) uptake by PET imaging in older HIV+ and HIV- individuals . J Neurovirol 2020; 26:382–390. ; Schretlen DJ, Winicki JM, Meyer SM, Testa SM, Pearlson GD, Gordon B. Development, psychometric properties, and validity of the Hopkins Adult Reading Test (HART) . Clin Neuropsychol 2009; 23:926–943. ; Radloff LS. The CES-D scale: a self report depression scale for research in the general population . Appl Psychol Meas 1977; 1:385–401. ; Learmonth YC, Dlugonski D, Pilutti LA, Sandroff BM, Klaren R, Motl RW. Psychometric properties of the Fatigue Severity Scale and the Modified Fatigue Impact Scale . J Neurol Sci 2013; 331:102–107. ; Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale . Sleep 1991; 14:540–545. ; Sacktor NC, Wong M, Nakasujja N, Skolasky RL, Selnes OA, Musisi S, et al. The International HIV Dementia Scale: a new rapid screening test for HIV dementia . Aids 2005; 19:1367–1374. ; Fantoni M, Izzi I, Del Borgo C, Del Forno A, Damiano F, Pezzotti P, et al. Inter-rater reliability of a modified Karnofsky Scale of Performance Status for HIV-infected individuals . AIDS Patient Care STDS 1999; 13:23–28. ; Heaton RK, Marcotte TD, Mindt MR, Sadek J, Moore DJ, Bentley H, et al. HNRC Group. The impact of HIV-associated neuropsychological impairment on everyday functioning . J Int Neuropsychol Soc 2004; 10:317–331. ; Gandhi NS, Skolasky RL, Peters KB, Moxley RT, Creighton J, Roosa HV, et al. A comparison of performance-based measures of function in HIV-associated neurocognitive disorders . J Neurovirol 2011; 17:159–165. ; Bentley H, Grant I, Heaton RK, Marcotte TD, McCutchan JA, Mindt MR, et al. HNRC Group. The impact of HIV-associated neuropsychological impairment on everyday functioning . J Int Neuropsychol Soc 2004; 10:317–331. ; Saxton J, Morrow L, Baumann S, Zuccolotto A, Schneider W, Offerman J, et al. The computer-based assessment of mild cognitive impairment (CAMCI). In: Thirty-third Annual International Neuropsychological Society Conference ; 2005. ; Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders . Neurology 2007; 69:1789–1799. ; Benedict RHB, Schretlen D, Groninger L, Brandt J. Hopkins Verbal Learning Test - Revised: normative data and analysis of inter-form and test-retest reliability . Clin Neuropsychologist 1998; 12:43–55. ; Rey A. L’examen psychologique dans les cas d’encephalopathie traumatique (Les problems) . Arch Psychol 1941; 28:215–285. ; Benton AL. Differential behavioral effects in frontal lobe disease . Neuropsychologia 1968; 6:53–60. ; Miller EN, Satz P, Visscher B. Computerized and conventional neuropsychological assessment of HIV-1-infected homosexual men . Neurology 1991; 41:1608–1616. ; Reitan R, Wolfson D. The Halstead-Reitan Neuropsychological Test Battery: theory and clinical interpretation . Tuscon, AZ: Neuropsychology Press; 1985. ; Wechsler D. Wechsler Adult Intelligence Scale - Revised . New York: Psychological Corporation; 1981. ; Masters MC, Ances BM. Role of neuroimaging in HIV-associated neurocognitive disorders . Semin Neurol 2014; 34:89–102. ; Chaganti J, Brew BJ. MR spectroscopy in HIV associated neurocognitive disorder in the era of cART: a review . AIDS Res Ther 2021; 18:65. ; Ernst T, Jiang CS, Nakama H, Buchthal S, Chang L. Lower brain glutamate is associated with cognitive deficits in HIV patients: a new mechanism for HIV-associated neurocognitive disorder . J Magn Reson Imaging 2010; 32:1045–1053. ; Mohamed MA, Barker PB, Skolasky RL, Selnes OA, Moxley RT, Pomper MG, Sacktor NC. Brain metabolism and cognitive impairment in HIV infection: a 3-T magnetic resonance spectroscopy study . Magn Reson Imaging 2010; 28:1251–1257. ; Oeltzschner G, Wijtenburg SA, Mikkelsen M, Edden RAE, Barker PB, Joo JH, et al. Neurometabolites and associations with cognitive deficits in mild cognitive impairment: a magnetic resonance spectroscopy study at 7 Tesla . Neurobiol Aging 2019; 73:211–218. ; Pouwels PJ, Frahm J. Differential distribution of NAA and NAAG in human brain as determined by quantitative localized proton MRS . NMR Biomed 1997; 10:73–78. ; Senter RK, Ghoshal A, Walker AG, Xiang Z, Niswender CM, Conn PJ. The role of mGlu receptors in hippocampal plasticity deficits in neurological and psychiatric disorders: implications for allosteric modulators as novel therapeutic strategies . Curr Neuropharmacol 2016; 14:455–473. ; Testa CM, Standaert DG, Young AB, Penney JB Jr. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat . J Neurosci 1994; 14 (5 Pt 2):3005–3018. ; Testa CM, Friberg IK, Weiss SW, Standaert DG. Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia . J Comp Neurol 1998; 390:5–19. ; Paul RH, Ernst T, Brickman AM, Yiannoutsos CT, Tate DF, Cohen RA, et al. ACTG 301 team, ACTG 700 team, HIV MRS Consortium. Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV . J Int Neuropsychol Soc 2008; 14:725–733. ; Thames AD, Foley JM, Wright MJ, Panos SE, Ettenhofer M, Ramezani A, et al. Basal ganglia structures differentially contribute to verbal fluency: evidence from Human Immunodeficiency Virus (HIV)-infected adults . Neuropsychologia 2012; 50:390–395. ; Nguyen T, Kirsch BJ, Asaka R, Nabi K, Quinones A, Tan J, et al. Uncovering the role of N-acetyl-aspartyl-glutamate as a glutamate reservoir in cancer . Cell Rep 2019; 27:491.e6–501.e6. ; Forloni G, Grzanna R, Blakely RD, Coyle JT. Co-localization of N-acetyl-aspartyl-glutamate in central cholinergic, noradrenergic, and serotonergic neurons . Synapse 1987; 1:455–460. ; Nordengen K, Morland C, Slusher BS, Gundersen V. Dendritic localization and exocytosis of NAAG in the rat hippocampus . Cereb Cortex 2020; 30:1422–1435. ; Messiaen P, Wensing AM, Fun A, Nijhuis M, Brusselaers N, Vandekerckhove L. Clinical use of HIV integrase inhibitors: a systematic review and meta-analysis . PLoS One 2013; 8:e52562. ; Zhao AV, Crutchley RD, Guduru RC, Ton K, Lam T, Min AC. A clinical review of HIV integrase strand transfer inhibitors (INSTIs) for the prevention and treatment of HIV-1 infection . Retrovirology 2022; 19:22. ; Arendt G, de Nocker D, von Giesen HJ, Nolting T. Neuropsychiatric side effects of efavirenz therapy . Expert Opin Drug Saf 2007; 6:147–154.
  • Grant Information: P30 MH075673 United States MH NIMH NIH HHS; R01 AG068130 United States AG NIA NIH HHS
  • Substance Nomenclature: 1W8M12WXYL (isospaglumic acid) ; 0 (Dipeptides)
  • Entry Date(s): Date Created: 20240227 Date Completed: 20240501 Latest Revision: 20240603
  • Update Code: 20240603
  • PubMed Central ID: PMC11062820

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -