Zum Hauptinhalt springen

Supplementing Glucose Intake Reverses the Inflammation Induced by a High-Fat Diet by Increasing the Expression of Siglec-E Ligands on Erythrocytes.

Liu, H ; Li, J ; et al.
In: Inflammation, Jg. 47 (2024-04-01), Heft 2, S. 609-625
Online academicJournal

Titel:
Supplementing Glucose Intake Reverses the Inflammation Induced by a High-Fat Diet by Increasing the Expression of Siglec-E Ligands on Erythrocytes.
Autor/in / Beteiligte Person: Liu, H ; Li, J ; Wu, N ; She, Y ; Luo, Y ; Huang, Y ; Quan, H ; Fu, W ; Li, X ; Zeng, D ; Jia, Y
Link:
Zeitschrift: Inflammation, Jg. 47 (2024-04-01), Heft 2, S. 609-625
Veröffentlichung: 1999- : New York, NY : Kluwer Academic/Plenum Publishers ; <i>Original Publication</i>: New York, Plenum Press., 2024
Medientyp: academicJournal
ISSN: 1573-2576 (electronic)
DOI: 10.1007/s10753-023-01932-0
Schlagwort:
  • Animals
  • Mice
  • Ligands
  • Atherosclerosis metabolism
  • Atherosclerosis prevention & control
  • Antigens, CD metabolism
  • Dietary Supplements
  • Male
  • Mice, Inbred C57BL
  • Diet, High-Fat adverse effects
  • Sialic Acid Binding Immunoglobulin-like Lectins metabolism
  • Inflammation metabolism
  • Erythrocytes metabolism
  • Erythrocytes drug effects
  • Glucose metabolism
  • Antigens, Differentiation, B-Lymphocyte
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Inflammation] 2024 Apr; Vol. 47 (2), pp. 609-625. <i>Date of Electronic Publication: </i>2024 Mar 07.
  • MeSH Terms: Diet, High-Fat* / adverse effects ; Sialic Acid Binding Immunoglobulin-like Lectins* / metabolism ; Inflammation* / metabolism ; Erythrocytes* / metabolism ; Erythrocytes* / drug effects ; Glucose* / metabolism ; Antigens, Differentiation, B-Lymphocyte* ; Animals ; Mice ; Ligands ; Atherosclerosis / metabolism ; Atherosclerosis / prevention & control ; Antigens, CD / metabolism ; Dietary Supplements ; Male ; Mice, Inbred C57BL
  • References: Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology 13: 159–175. https://doi.org/10.1038/nri3399 . (PMID: 10.1038/nri339923435331) ; Zhou, M.G., H.D. Wang, X.Y. Zeng, P. Yin, J. Zhu, W.Q. Chen, X.H. Li, L.J. Wang, L.M. Wang, Y.N. Liu, J.M. Liu, M. Zhang, J.L. Qi, S.C. Yu, A. Afshin, E. Gakidou, S. Glenn, V.S. Krish, M.K. Miller-Petrie, et al. 2019. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet 394: 1145–1158. https://doi.org/10.1016/S0140-6736(19)30427-1 . (PMID: 10.1016/S0140-6736(19)30427-1312486666891889) ; Soehnlein, O. 2012. Multiple roles for neutrophils in atherosclerosis. Circulation Research 110: 875–888. https://doi.org/10.1161/CIRCRESAHA.111.257535 . (PMID: 10.1161/CIRCRESAHA.111.25753522427325) ; Swirski, F.K., M.J. Pittet, M.F. Kircher, E. Aikawa, F.A. Jaffer, P. Libby, and R. Weissleder. 2006. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proceedings of the National Academy of Sciences 103: 10340–10345. https://doi.org/10.1073/pnas.0604260103 . (PMID: 10.1073/pnas.0604260103) ; Tabas, I., and A.H. Lichtman. 2017. Monocyte-macrophages and T cells in atherosclerosis. Immunity 47: 621–634. https://doi.org/10.1016/j.immuni.2017.09.008 . (PMID: 10.1016/j.immuni.2017.09.008290458975747297) ; Duewell, P., H. Kono, K.J. Rayner, C.M. Sirois, G. Vladimer, F.G. Bauernfeind, G.S. Abela, L. Franchi, G. Nuñez, M. Schnurr, T. Espevik, E. Lien, K.A. Fitzgerald, K.L. Rock, K.J. Moore, S.D. Wright, V. Hornung, and E. Latz. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 1357–1361. https://doi.org/10.1038/nature08938 . (PMID: 10.1038/nature08938204281722946640) ; DiRenzo, D., G.K. Owens, and N.J. Leeper. 2017. “Attack of the clones”: Commonalities between cancer and atherosclerosis. Circulation Research 120: 624–626. https://doi.org/10.1161/CIRCRESAHA.116.310091 . (PMID: 10.1161/CIRCRESAHA.116.310091282097945822423) ; Fredman, G., and I. Tabas. 2017. Boosting inflammation resolution in atherosclerosis: The next frontier for therapy. The American Journal of Pathology 187: 1211–1221. https://doi.org/10.1016/j.ajpath.2017.01.018 . (PMID: 10.1016/j.ajpath.2017.01.018285277095455064) ; Libby, P. 2017. Interleukin-1 beta as a target for atherosclerosis therapy: Biological basis of CANTOS and beyond. Journal of the American College of Cardiology 70: 2278–2289. https://doi.org/10.1016/j.jacc.2017.09.028 . (PMID: 10.1016/j.jacc.2017.09.028290739575687846) ; Zhang, J.Q., G. Nicoll, C. Jones, and P.R. Crocker. 2000. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. The Journal of Biological Chemistry 275: 22121–22126. https://doi.org/10.1074/jbc.M002788200 . (PMID: 10.1074/jbc.M00278820010801862) ; Yu, Z., M. Maoui, L. Wu, D. Banville, and S. Shen. 2001. mSiglec-E, a novel mouse CD33-related siglec (sialic acid-binding immunoglobulin-like lectin) that recruits Src homology 2 (SH2)-domain-containing protein tyrosine phosphatases SHP-1 and SHP-2. The Biochemical Journal 353: 483–492. https://doi.org/10.1042/0264-6021:3530483 . (PMID: 10.1042/0264-6021:3530483111710441221593) ; Lizcano, A., I. Secundino, S. Döhrmann, R. Corriden, C. Rohena, S. Diaz, P. Ghosh, L.Q. Deng, V. Nizet, and A. Varki. 2017. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood 129: 3100–3110. https://doi.org/10.1182/blood-2016-11-751636 . (PMID: 10.1182/blood-2016-11-751636284165105465837) ; Liu, H.M., Y. Zheng, Y.X. Zhang, J. Li, S.M. Fernandes, D.F. Zeng, X.H. Li, R.L. Schnaar, and Y. Jia. 2020. Immunosuppressive Siglec-E ligands on mouse aorta are up-regulated by LPS via NF-κB pathway. Biomedicine & Pharmacotherapy 122: 109760. https://doi.org/10.1016/j.biopha.2019.109760 . (PMID: 10.1016/j.biopha.2019.109760) ; Zhang, Y.X., Y. Zheng, J. Li, L. Nie, Y.J. Hu, F.J. Wang, H.M. Liu, S.M. Fernandes, Q.J. Zhong, X.H. Li, R.L. Schnaar, and Y. Jia. 2019. Immunoregulatory Siglec ligands are abundant in human and mouse aorta and are up-regulated by high glucose. Life Sciences 216: 189–199. https://doi.org/10.1016/j.lfs.2018.11.049 . (PMID: 10.1016/j.lfs.2018.11.04930471282) ; Citro, A., A. Valle, E. Cantarelli, A. Mercalli, S. Pellegrin, D. Liberati, L. Daffonchio, O. Kastsiuchenka, P.A. Ruffini, M. Battaglia, M. Allegretti, and L. Piemonti. 2015. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice. Diabetes 64: 1329–1340. https://doi.org/10.2337/db14-0443 . (PMID: 10.2337/db14-044325315007) ; Gautier, E.F., M. Leduc, S. Cochet, K. Bailly, C. Lacombe, N. Mohandas, F. Guillonneau, W.E. Nemer, and P. Mayeux. 2018. Absolute proteome quantification of highly purified populations of circulating reticulocytes and mature erythrocytes. Blood Advances 2: 2646–2657. https://doi.org/10.1182/bloodadvances.2018023515 . (PMID: 10.1182/bloodadvances.2018023515303273736199659) ; Nakajima, K., S. Kitazume, T. Angata, R. Fujinawa, K. Ohtsubo, E. Miyoshi, and N. Taniguchi. 2010. Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC. Glycobiology 20: 865–871. https://doi.org/10.1093/glycob/cwq044 . (PMID: 10.1093/glycob/cwq04420371511) ; Kochanowski, N., F. Blanchard, R. Cacan, F. Chirat, E. Guedon, A. Marc, and J.L. Goergen. 2006. Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC. Analytical Biochemistry 348: 243–251. https://doi.org/10.1016/j.ab.2005.10.027 . (PMID: 10.1016/j.ab.2005.10.02716325757) ; Libby, P. 2002. Inflammation in atherosclerosis. Nature 420: 868–874. https://doi.org/10.1038/nature01323 . (PMID: 10.1038/nature0132312490960) ; Libby, P. 2012. Inflammation in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32: 2045–2051. https://doi.org/10.1161/ATVBAHA.108.179705 . (PMID: 10.1161/ATVBAHA.108.179705228956653422754) ; Gaetano, G. 2001. Low-dose aspirin and vitamin E in people at cardiovascular risk: A randomised trial in general practice. Lancet 357: 89–95. https://doi.org/10.1016/s0140-6736(00)03539-x . (PMID: 10.1016/s0140-6736(00)03539-x11197445) ; Everett, B.M., A.D. Pradhan, D.H. Solomon, N. Paynter, J. Macfadyen, E. Zaharris, M. Gupta, M. Clearfield, P. Libby, A. Hasan, R.J. Glynn, and P.M. Ridker. 2013. Rationale and design of the cardiovascular inflammation reduction trial: A test of the inflammatory hypothesis of atherothrombosis. American Heart Journal 166: 199–207. https://doi.org/10.1016/j.ahj.2013.03.018 . (PMID: 10.1016/j.ahj.2013.03.018238958013888829) ; Raber, I., C.P. McCarthy, M. Vaduganathan, D.L. Bhatt, D.A. Wood, J. Cleland, R. Blumenthal, and J.W. McEvoy. 2019. The rise and fall of aspirin in the primary prevention of cardiovascular disease. Lancet 393: 2155–2167. https://doi.org/10.1016/S0140-6736(19)30541-0 . (PMID: 10.1016/S0140-6736(19)30541-031226053) ; Gaziano, J.M., C. Broton, R. Coppolecchia, C. Cricelli, H. Darius, P.B. Gorelick, G. Howard, T.A. Pearson, P.M. Rothwell, L.M. Ruilope, M. Tendera, and G. Tognoni. 2018. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): A randomised, double-blind, placebo-controlled trial. Lancet 392: 1036–1046. https://doi.org/10.1016/S0140-6736(18)31924-X . (PMID: 10.1016/S0140-6736(18)31924-X301580697255888) ; Huang, Y., H.M. Liu, Y.X. Zhang, J. Li, C.P. Wang, L. Zhou, Y. Jia, and X.H. Li. 2017. Synthesis and biological evaluation of ginsenoside compound K derivatives as a novel class of LXRα activator. Molecules 22: 1232. https://doi.org/10.3390/molecules22071232 . (PMID: 10.3390/molecules22071232287377266152260) ; Capodanno, D., and D.J. Angiolillo. 2018. Canakinumab for secondary prevention of atherosclerotic disease. Expert Opinion on Biological Therapy 18: 215–220. https://doi.org/10.1080/14712598.2018.1420776 . (PMID: 10.1080/14712598.2018.142077629265905) ; Kawanishi, K., C. Dhar, R. Do, N. Varki, P. Gordts, and A. Varki. 2019. Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proceedings of the National Academy of Sciences 116: 16036–16045. https://doi.org/10.1073/pnas.1902902116 . (PMID: 10.1073/pnas.1902902116) ; Zakiev, E.R., I.A. Sobenin, V.N. Sukhorukov, V.A. Myasoedova, E.A. Ivanova, and A.N. Orekhov. Carbohydrate composition of circulating multiple-modified low-density lipoprotein. Vascular Health and Risk Management 12: 379–385. https://doi.org/10.2147/VHRM.S112948 . ; Zhang, L., T.T. Wei, Y. Li, J. Li, Y. Fan, F.Q. Huang, Y.Y. Cai, G.X. Ma, J.F. Liu, Q.Q. Chen, S.L. Wang, H.L. Li, R.N. Alolga, B.L. Liu, D.S. Zhao, J.H. Shen, X.M. Wang, W. Zhu, P. Li, and L.W. Qi. 2018. Functional metabolomics characterizes a key role for N-acetylneuraminic acid in coronary artery diseases. Circulation 137: 1374–1390. https://doi.org/10.1161/CIRCULATIONAHA.117.031139 . (PMID: 10.1161/CIRCULATIONAHA.117.03113929212895) ; Lübbers, J., E. Rodríguez, and Y. Kooyk. 2018. Modulation of immune tolerance via Siglec-sialic acid interactions. Frontiers in Immunology 9: 2807. https://doi.org/10.3389/fimmu.2018.02807 . (PMID: 10.3389/fimmu.2018.02807305814326293876) ; Gruber, S., T. Hendrikx, D. Tsiantoulas, M.O. Kozma, L. Göderle, Z. Mallat, J.L. Witztum, R.S. Sverdlov, L. Nitschke, and C.J. Binder. 2016. Sialic acid-binding immunoglobulin-like lectin G promotes atherosclerosis and liver inflammation by suppressing the protective functions of B-1 cells. Cell Reports 14: 2348–2361. https://doi.org/10.1016/j.celrep.2016.02.027 . (PMID: 10.1016/j.celrep.2016.02.02726947073) ; Schleimer, R.P., R.L. Schnaar, and B.S. Bochner. 2016. Regulation of airway inflammation by Siglec-8 and Siglec-9 sialoglycan ligand expression. Current Opinion in Allergy and Clinical Immunology 16: 24–30. https://doi.org/10.1097/ACI.0000000000000234 . (PMID: 10.1097/ACI.0000000000000234266940374811040) ; Hsu, Y.W., F.F. Hsu, M.T. Chiang, D.L. Tsai, F.A. Li, T. Angata, P.R. Crocker, and L.Y. Chau. 2021. Siglec-E retards atherosclerosis by inhibiting CD36-mediated foam cell formation. Journal of Biomedical Science 28: 5. https://doi.org/10.1186/s12929-020-00698-z . (PMID: 10.1186/s12929-020-00698-z333973547784283) ; Kiser, Z.M., A. Lizcano, J. Nguyen, G.L. Becker, J.D. Belcher, A.P. Varki, and G.M. Vercellotti. 2020. Decreased erythrocyte binding of Siglec-9 increases neutrophil activation in sickle cell disease. Blood Cells, Molecules & Diseases 81: 102399. https://doi.org/10.1016/j.bcmd.2019.102399 . (PMID: 10.1016/j.bcmd.2019.102399) ; Biadgo, B., M. Melku, S.M. Abebe, and M. Abebe. 2016. Hematological indices and their correlation with fasting blood glucose level and anthropometric measurements in type 2 diabetes mellitus patients in Gondar, Northwest Ethiopia. Diabetes Metab Syndr Obes 9: 91–99. https://doi.org/10.2147/DMSO.S97563 . (PMID: 10.2147/DMSO.S97563270421344801204) ; Su, B.Y., C.F. Tian, B.L. Gao, Y.H. Tong, X.H. Zhao, and Y. Zheng. 2016. Correlation of the leucocyte count with traditional and non-traditional components of metabolic syndrome. Postgraduate Medicine 128: 805–809. https://doi.org/10.1080/00325481.2016.1243980 . (PMID: 10.1080/00325481.2016.124398027690724) ; Zhou, J.W., J.H. Wu, J.T. Zhang, T. Xu, H. Zhang, Y.H. Zhang, and S.Y. Zhang. 2015. Association of stroke clinical outcomes with coexistence of hyperglycemia and biomarkers of inflammation. Journal of Stroke and Cerebrovascular Diseases 24: 1250–1255. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.01.028 . (PMID: 10.1016/j.jstrokecerebrovasdis.2015.01.02825906929) ; Zhang, D.F., W.W. Jin, R.Q. Wu, J. Li, S.A. Park, E. Tu, P. Zanvit, J.J. Xu, O.S. Liu, A. Cain, and W.J. Chen. 2019. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51: 671–681. https://doi.org/10.1016/j.immuni.2019.08.001 . (PMID: 10.1016/j.immuni.2019.08.001314513979811990) ; Bornfeldt, K.E. 2016. Does elevated glucose promote atherosclerosis? Pros and cons. Circulation Research 119: 190–193. https://doi.org/10.1161/CIRCRESAHA.116.308873 . (PMID: 10.1161/CIRCRESAHA.116.308873273903304940114) ; Patras, K.A., A. Coady, J. Olson, S.R. Ali, S.P. RamachandraRao, S. Kumar, A. Varki, and V. Nizet. 2017. Tamm-Horsfall glycoprotein engages human Siglec-9 to modulate neutrophil activation in the urinary tract. Immunology and Cell Biology 95: 960–965. https://doi.org/10.1038/icb.2017.63 . (PMID: 10.1038/icb.2017.63288290505698129) ; Jia, Y., H.F. Yu, S.M. Fernandes, Y.D. Wei, A.G. Gil, M.G. Motari, K. Vajn, W.W. Stevens, A.T. Peters, B.S. Bochner, R.C. Kern, R.P. Schleimer, and R.L. Schnaar. 2016. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells. Current Opinion in Allergy and Clinical Immunology 16: 24–30. https://doi.org/10.1097/ACI.0000000000000234 . (PMID: 10.1097/ACI.0000000000000234) ; Pernow, J., A. Mahdi, J. Yang, and Z. Zhou. 2019. Red blood cell dysfunction: A new player in cardiovascular disease. Cardiovascular Research 115: 1596–1605. https://doi.org/10.1093/cvr/cvz156 . (PMID: 10.1093/cvr/cvz15631198931) ; Sprague, R.S., and M.L. Ellsworth. 2012. Erythrocyte-derived ATP and perfusion distribution: Role of intracellular and intercellular communication. Microcirculation 19: 430–439. https://doi.org/10.1111/j.1549-8719.2011.00158.x . (PMID: 10.1111/j.1549-8719.2011.00158.x227757603324633) ; Sikora, J., S.N. Orlov, K. Furuya, and R. Grygorczyk. 2014. Hemolysis is a primary ATP-release mechanism in human erythrocytes. Blood 124: 2150–2157. https://doi.org/10.1182/blood-2014-05-572024 . (PMID: 10.1182/blood-2014-05-572024250971784186543) ; Salgado, M.T., Z.L. Cao, E. Nagababu, J.G. Mohanty, and J.M. Rifkind. 2015. Red blood cell membrane-facilitated release of nitrite-derived nitric oxide bioactivity. Biochemistry 54: 6712–6723. https://doi.org/10.1021/acs.biochem.5b00643 . (PMID: 10.1021/acs.biochem.5b0064326478948) ; Diederich, L., T. Suvorava, R. Sansone, T.C.S. Keller 4th, F. Barbarino, T.R. Sutton, C.M. Kramer, W. Lückstädt, B.E. Isakson, H. Gohlke, M. Feelisch, M. Kelm, and M.M. Cortese-Krott. 2018. On the effects of reactive oxygen species and nitric oxide on red blood cell deformability. Frontiers in Physiology 9: 332. https://doi.org/10.3389/fphys.2018.00332 . (PMID: 10.3389/fphys.2018.00332298675165958211) ; Mohanty, J.G., E. Nagababu, and J.M. Rifkind. 2014. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Frontiers in Physiology 5: 84. https://doi.org/10.3389/fphys.2014.00084 . (PMID: 10.3389/fphys.2014.00084246167073937982) ; Zhou, Z., A. Mahdi, Y. Tratsiakovich, S. Zahorán, O. Kövamees, F. Nordin, A.E. Uribe Gonzalez, M. Alvarsson, C.G. Östenson, D.C. Andersson, U. Hedin, E. Hermesz, J.O. Lundberg, J. Yang, and J. Pernow. 2018. Erythrocytes from patients with type 2 diabetes induce endothelial dysfunction via arginase I. Journal of the American College of Cardiology 72: 769–780. https://doi.org/10.1016/j.jacc.2018.05.052 . (PMID: 10.1016/j.jacc.2018.05.05230092954) ; Gopaul, K.P., and M.A. Crook. 2006. Sialic acid: A novel marker of cardiovascular disease? Clinical Biochemistry 39: 667–681. https://doi.org/10.1016/j.clinbiochem.2006.02.010 . (PMID: 10.1016/j.clinbiochem.2006.02.01016624269) ; Zhang, C., J. Chen, Y. Liu, and D. Xu. 2019. Sialic acid metabolism as a potential therapeutic target of atherosclerosis. Lipids in Health and Disease 18: 173. https://doi.org/10.1186/s12944-019-1113-5 . (PMID: 10.1186/s12944-019-1113-5315211726745061) ; Gonzalez, P.S., J. O'Prey, S. Cardaci, V.J.A. Barthet, J.I. Sakamaki, F. Beaumatin, A. Roseweir, D.M. Gay, G. Mackay, G. Malviya, E. Kania, S. Ritchie, A.D. Baudot, B. Zunino, A. Mrowinska, C. Nixon, D. Ennis, A. Hoyle, D. Millan, et al. 2018. Mannose impairs tumour growth and enhances chemotherapy. Nature 563: 719–723. https://doi.org/10.1038/s41586-018-0729-3 . (PMID: 10.1038/s41586-018-0729-330464341) ; Wang, X.J., R.L. Liu, W.C. Zhu, H.Y. Chu, H. Yu, P. Wei, X.Y. Wu, H.W. Zhu, H. Gao, J. Liang, G.H. Li, and W.W. Yang. 2019. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis. Nature 571: 127–131. https://doi.org/10.1038/s41586-019-1340-y . (PMID: 10.1038/s41586-019-1340-y31243371) ; Tardif, J.C., and M. Samuel. 2023. Inflammation contributes to cardiovascular risk in patients receiving statin therapy. Lancet 401 (10384): 1245–1247. https://doi.org/10.1016/S0140-6736(23)00454-3 . (PMID: 10.1016/S0140-6736(23)00454-336893776) ; Cai, T., L. Abel, O. Langford, G. Monaghan, J.K. Aronson, R.J. Stevens, S. Lay-Flurrie, C. Koshiaris, R.J. McManus, F.D.R. Hobbs, and J.P. Sheppard. 2021. Associations between statins and adverse events in primary prevention of cardiovascular disease: Systematic review with pairwise, network, and dose-response meta-analyses. BMJ 374: n1537. https://doi.org/10.1136/bmj.n1537 . (PMID: 10.1136/bmj.n1537342616278279037)
  • Contributed Indexing: Keywords: atherosclerosis; erythrocytes; glucose; hyperlipidemia; inflammation; siglec-9 ligands
  • Substance Nomenclature: 0 (Sialic Acid Binding Immunoglobulin-like Lectins) ; 0 (Ligands) ; IY9XDZ35W2 (Glucose) ; 0 (Siglece protein, mouse) ; 0 (Antigens, CD) ; 0 (Antigens, Differentiation, B-Lymphocyte)
  • Entry Date(s): Date Created: 20240306 Date Completed: 20240506 Latest Revision: 20240531
  • Update Code: 20240601

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -