Zum Hauptinhalt springen

Harnessing natural killer cells to target HIV-1 persistence.

Joshi, VR ; Altfeld, M
In: Current opinion in HIV and AIDS, Jg. 19 (2024-05-01), Heft 3, S. 141-149
academicJournal

Titel:
Harnessing natural killer cells to target HIV-1 persistence.
Autor/in / Beteiligte Person: Joshi, VR ; Altfeld, M
Zeitschrift: Current opinion in HIV and AIDS, Jg. 19 (2024-05-01), Heft 3, S. 141-149
Veröffentlichung: Hagerstown, MD : Lippincott Williams & Wilkins, c2006-, 2024
Medientyp: academicJournal
ISSN: 1746-6318 (electronic)
DOI: 10.1097/COH.0000000000000848
Schlagwort:
  • Humans
  • Virus Latency
  • Killer Cells, Natural
  • T-Lymphocytes
  • CD4-Positive T-Lymphocytes
  • HIV Infections drug therapy
  • HIV-1 physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Review; Journal Article
  • Language: English
  • [Curr Opin HIV AIDS] 2024 May 01; Vol. 19 (3), pp. 141-149. <i>Date of Electronic Publication: </i>2024 Feb 28.
  • MeSH Terms: HIV Infections* / drug therapy ; HIV-1* / physiology ; Humans ; Virus Latency ; Killer Cells, Natural ; T-Lymphocytes ; CD4-Positive T-Lymphocytes
  • References: www.who.int . ; Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 2011; 1:a006841. ; Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells. Nat Immunol 2008; 9:503–510. ; Lanier LL. NK cell recognition. Annu Rev Immunol 2005; 23:225–274. ; Björkström NK, Strunz B, Ljunggren H-G. Natural killer cells in antiviral immunity. Nat Rev Immunol 2022; 22:112–123. ; Alter G, Altfeld M. NK cell function in HIV-1 infection. Curr Mol Med 2006; 6:621–629. ; Alter G, Altfeld M. NK cells in HIV-1 infection: evidence for their role in the control of HIV-1 infection. J Intern Med 2009; 265:29–42. ; Flórez-Álvarez L, Hernandez JC, Zapata W. NK cells in HIV-1 infection: from basic science to vaccine strategies. Front Immunol 2018; 9:2290. ; Fogli M, Mavilio D, Brunetta E, et al. Lysis of endogenously infected CD4+ T cell blasts by rIL-2 activated autologous natural killer cells from HIV-infected viremic individuals. PLoS Pathog 2008; 4:e1000101. ; Apps R, Del Prete GQ, Chatterjee P, et al. HIV-1 Vpu mediates HLA-C downregulation. Cell Host Microbe 2016; 19:686–695. ; Körner C, Simoneau CR, Schommers P, et al. HIV-1-mediated downmodulation of HLA-C impacts target cell recognition and antiviral activity of NK cells. Cell Host Microbe 2017; 22:111–119. e4. ; O'Sullivan TE, Sun JC, Lanier LL. Natural killer cell memory. Immunity 2015; 43:634–645. ; Jost S, Lucar O, Lee E, et al. Antigen-specific memory NK cell responses against HIV and influenza use the NKG2/HLA-E axis. Sci Immunol 2023; 8:eadi3974. ; Paust S, von Andrian UH. Natural killer cell memory. Nat Immunol 2011; 12:500–508. ; Reeves RK, Li H, Jost S, et al. Antigen-specific NK cell memory in rhesus macaques. Nat Immunol 2015; 16:927–932. ; Altfeld M, Gale M Jr. Innate immunity against HIV-1 infection. Nat Immunol 2015; 16:554–562. ; Martrus G, Niehrs A, Cornelis R, et al. Kinetics of HIV-1 latency reversal quantified on the single-cell level using a novel flow-based technique. J Virol 2016; 90:9018–9028. ; Margolis DM, Archin NM, Cohen MS, et al. Curing HIV: seeking to target and clear persistent infection. Cell 2020; 181:189–206. ; Archin NM, Bateson R, Tripathy MK, et al. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis 2014; 210:728–735. ; Archin NM, Kirchherr JL, Sung JA, et al. Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency. J Clin Invest 2017; 127:3126–3135. ; Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 2012; 487:482–485. ; Rasmussen TA, Tolstrup M, Brinkmann CR, et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 2014; 1:e13–e21. ; Elliott JH, Wightman F, Solomon A, et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog 2014; 10:e1004473. ; Pace M, Williams J, Kurioka A, et al. Histone deacetylase inhibitors enhance CD4 T cell susceptibility to NK cell killing but reduce NK cell function. PLoS Pathog 2016; 12:e1005782. ; Cillo AR, Sobolewski MD, Bosch RJ, et al. Quantification of HIV-1 latency reversal in resting CD4 + T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 2014; 111:7078–7083. ; Garrido C, Tolstrup M, Søgaard OS, et al. In-vivo administration of histone deacetylase inhibitors does not impair natural killer cell function in HIV+ individuals. AIDS 2019; 33:605–613. ; Ogbomo H, Michaelis M, Kreuter J, et al. Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett 2007; 581:1317–1322. ; Pfeiffer MM, Burow H, Schleicher S, et al. Influence of histone deacetylase inhibitors and DNA-methyltransferase inhibitors on the NK cell-mediated lysis of pediatric B-lineage leukemia. Front Oncol 2013; 3:99. ; Garrido C, Spivak AM, Soriano-Sarabia N, et al. HIV latency-reversing agents have diverse effects on natural killer cell function. Front Immunol 2016; 7:356. ; Olesen R, Vigano S, Rasmussen TA, et al. Innate immune activity correlates with CD4 T cell-associated HIV-1 DNA decline during latency-reversing treatment with panobinostat. J Virol 2015; 89:10176–10189. ; Desimio MG, Covino DA, Doria M. Potential of the NKG2D/NKG2DL axis in NK cell-mediated clearance of the HIV-1 reservoir. Int J Mol Sci 2019; 20:E4490. ; Ni L, Wang L, Yao C, et al. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci Rep 2017; 7:45266. ; Gutiérrez C, Serrano-Villar S, Madrid-Elena N, et al. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS 2016; 30:1385–1392. ; Rodari A, Darcis G, Van Lint CM. The current status of latency reversing agents for HIV-1 remission. Annu Rev Virol 2021; 8:491–514. ; Mancebo HS, Lee G, Flygare J, et al. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997; 11:2633–2644. ; Fujinaga K, Barboric M, Li Q, et al. PKC phosphorylates HEXIM1 and regulates P-TEFb activity. Nucleic Acids Res 2012; 40:9160–9170. ; Covino DA, Desimio MG, Doria M. Combinations of histone deacetylase inhibitors with distinct latency reversing agents variably affect HIV reactivation and susceptibility to NK cell-mediated killing of T cells that exit viral latency. Int J Mol Sci 2021; 22:6654. ; Desimio MG, Giuliani E, Ferraro AS, et al. In vitro exposure to prostratin but not bryostatin-1 improves natural killer cell functions including killing of CD4(+) T cells harboring reactivated human immunodeficiency virus. Front Immunol 2018; 9:1514. ; Desimio MG, Giuliani E, Doria M. The histone deacetylase inhibitor SAHA simultaneously reactivates HIV-1 from latency and up-regulates NKG2D ligands sensitizing for natural killer cell cytotoxicity. Virology 2017; 510:9–21. ; Reuse S, Calao M, Kabeya K, et al. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One 2009; 4:e6093. ; Hua S, Vigano S, Tse S, et al. Pegylated interferon-α-induced natural killer cell activation is associated with human immunodeficiency virus-1 DNA decline in antiretroviral therapy-treated HIV-1/hepatitis C virus-coinfected patients. Clin Infect Dis 2018; 66:1910–1917. ; Tomescu C, Mavilio D, Montaner LJ. Lysis of HIV-1-infected autologous CD4+ primary T cells by interferon-alpha-activated NK cells requires NKp46 and NKG2D. AIDS 2015; 29:1767–1773. ; Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11:373–384. ; Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol 2022; 13: 812774. ; Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell 2020; 180:1044–1066. ; Adib-Conquy M, Scott-Algara D, Cavaillon JM, Souza-Fonseca-Guimaraes F. TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol 2014; 92:256–262. ; Lauzon NM, Mian F, MacKenzie R, Ashkar AA. The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity. Cell Immunol 2006; 241:102–112. ; Wang X, Zhao X-Y. Transcription factors associated with IL-15 cytokine signaling during NK cell development. Front Immunol 2021; 12: 610789. ; Feau S, Facchinetti V, Granucci F, et al. Dendritic cell-derived IL-2 production is regulated by IL-15 in humans and in mice. Blood 2005; 105:697–702. ; Zanoni I, Foti M, Ricciardi-Castagnoli P, Granucci F. TLR-dependent activation stimuli associated with Th1 responses confer NK cell stimulatory capacity to mouse dendritic cells. J Immunol 2005; 175:286–292. ; Duan S, Xu X, Wang J, et al. TLR1/2 agonist enhances reversal of HIV-1 latency and promotes NK cell-induced suppression of HIV-1-infected autologous CD4(+) T cells. J Virol 2021; 95:e0081621. ; Tsai A, Irrinki A, Kaur J, et al. Toll-like receptor 7 agonist GS-9620 induces HIV expression and HIV-specific immunity in cells from HIV-infected individuals on suppressive antiretroviral therapy. J Virol 2017; 91:e02166-16. ; Schlaepfer E, Speck RF. Anti-HIV activity mediated by natural killer and CD8+ cells after toll-like receptor 7/8 triggering. PLoS One 2008; 3:e1999. ; Offersen R, Nissen SK, Rasmussen TA, et al. A novel Toll-like receptor 9 agonist, MGN1703, enhances HIV-1 transcription and NK cell-mediated inhibition of HIV-1-infected autologous CD4+ T cells. J Virol 2016; 90:4441–4453. ; Macedo AB, Novis CL, Bosque A. Targeting cellular and tissue HIV reservoirs with Toll-like receptor agonists. Front Immunol 2019; 10:2450. ; Bam RA, Hansen D, Irrinki A, et al. TLR7 agonist GS-9620 is a potent inhibitor of acute HIV-1 infection in human peripheral blood mononuclear cells. Antimicrob Agents Chemother 2017; 61: e01369-16. ; Martinsen JT, Gunst JD, Højen JF, et al. The use of Toll-like receptor agonists in HIV-1 cure strategies. Front Immunol 2020; 11:1112. ; Portales P, Reynes J, Pinet V, et al. Interferon-alpha restores HIV-induced alteration of natural killer cell perforin expression in vivo. AIDS 2003; 17:495–504. ; Azzoni L, Foulkes AS, Papasavvas E, et al. Pegylated interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis 2013; 207:213–222. ; Papasavvas E, Azzoni L, Kossenkov AV, et al. NK response correlates with HIV decrease in pegylated IFN-α2a-treated antiretroviral therapy-suppressed subjects. J Immunol 2019; 203:705–717. ; Papasavvas E, Azzoni L, Pagliuzza A, et al. Safety, immune, and antiviral effects of pegylated interferon alpha 2b administration in antiretroviral therapy-suppressed individuals: results of pilot clinical trial. AIDS Res Hum Retroviruses 2021; 37:433–443. ; Carson WE, Giri JG, Lindemann MJ, et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 1994; 180:1395–1403. ; Garrido C, Abad-Fernandez M, Tuyishime M, et al. Interleukin-15-stimulated natural killer cells clear HIV-1-infected cells following latency reversal ex vivo. J Virol 2018; 92: e00235-18. ; Howard JN, Bosque A. IL-15 and N-803 for HIV cure approaches. Viruses 2023; 15: 1912. ; Webb GM, Molden J, Busman-Sahay K, et al. The human IL-15 superagonist N-803 promotes migration of virus-specific CD8+ T and NK cells to B cell follicles but does not reverse latency in ART-suppressed, SHIV-infected macaques. PLoS Pathog 2020; 16:e1008339. ; Rhode PR, Egan JO, Xu W, et al. Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol Res 2016; 4:49–60. ; Miller JS, Davis ZB, Helgeson E, et al. Safety and virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1 trial. Nat Med 2022; 28:392–400. ; Jones RB, Mueller S, O’Connor R, et al. A subset of latency-reversing agents expose hiv-infected resting CD4+ T-cells to recognition by cytotoxic T-lymphocytes. PLoS Pathog 2016; 12:e1005545. ; McBrien JB, Mavigner M, Franchitti L, et al. Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8(+) cells. Nature 2020; 578:154–159. ; Bournazos S, Klein F, Pietzsch J, et al. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell 2014; 158:1243–1253. ; Board NL, Moskovljevic M, Wu F, et al. Engaging innate immunity in HIV-1 cure strategies. Nat Rev Immunol 2022; 22:499–512. ; Salantes DB, Zheng Y, Mampe F, et al. HIV-1 latent reservoir size and diversity are stable following brief treatment interruption. J Clin Invest 2018; 128:3102–3115. ; Cohen YZ, Lorenzi JCC, Krassnig L, et al. Relationship between latent and rebound viruses in a clinical trial of anti-HIV-1 antibody 3BNC117. J Exp Med 2018; 215:2311–2324. ; Bar KJ, Sneller MC, Harrison LJ, et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N Engl J Med 2016; 375:2037–2050. ; Trkola A, Kuster H, Rusert P, et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat Med 2005; 11:615–622. ; Scheid JF, Horwitz JA, Bar-On Y, et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 2016; 535:556–560. ; Caskey M, Klein F, Lorenzi JCC, et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 2015; 522:487–491. ; Asokan M, Dias J, Liu C, et al. Fc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibody. Proc Natl Acad Sci USA 2020; 117:18754–18763. ; Ramadoss NS, Zhao NQ, Richardson BA, et al. Enhancing natural killer cell function with gp41-targeting bispecific antibodies to combat HIV infection. AIDS 2020; 34:1313–1323. ; Thomsen N, Balakrishnana M, Pace C. GS-9722: first-in-class effector-enhanced broadly neutralizing antibody for HIV cure. Poster. 356:4–7. ; Tuyishime M, Garrido C, Jha S, et al. Improved killing of HIV-infected cells using three neutralizing and nonneutralizing antibodies. J Clin Invest 2020; 130:5157–5170. ; Lu CL, Murakowski DK, Bournazos S, et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 2016; 352:1001–1004. ; Hvilsom CT, Søgaard OS. TLR-agonist mediated enhancement of antibody-dependent effector functions as strategy for an HIV-1 cure. Front Immunol 2021; 12:704617. ; Borducchi EN, Liu J, Nkolola JP, et al. Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature 2018; 563:360–364. ; Hsu DC, Schuetz A, Imerbsin R, et al. TLR7 agonist, N6-LS and PGT121 delayed viral rebound in SHIV-infected macaques after antiretroviral therapy interruption. PLoS Pathog 2021; 17:e1009339. ; Tay SS, Carol H, Biro M. TriKEs and BiKEs join CARs on the cancer immunotherapy highway. Hum Vaccin Immunother 2016; 12:2790–2796. ; Davis ZB, Lenvik T, Hansen L, et al. A novel HIV envelope bi-specific killer engager enhances natural killer cell mediated ADCC responses against HIV-infected cells. Blood 2016; 128:2517. ; Vallera DA, Felices M, McElmurry R, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res 2016; 22:3440–3450. ; Board NL, Yuan Z, Wu F, et al. Bispecific antibodies promote natural killer cell-mediated elimination of HIV-1 reservoir cells. Nat Immunol 2024; doi: 10.1038/s41590-023-01741-5. Epub ahead of print. PMID: 38278966. (PMID: 10.1038/s41590-023-01741-5.) ; Liu Q, Sun Y, Rihn S, et al. Matrix metalloprotease inhibitors restore impaired NK cell-mediated antibody-dependent cellular cytotoxicity in human immunodeficiency virus type 1 infection. J Virol 2009; 83:8705–8712. ; Clayton KL, Mylvaganam G, Villasmil-Ocando A, et al. HIV-infected macrophages resist efficient NK cell-mediated killing while preserving inflammatory cytokine responses. Cell Host Microbe 2021; 29:435–447. e9. ; Sivori S, Vacca P, Del Zotto G, et al. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol 2019; 16:430–441. ; Anfossi N, André P, Guia S, et al. Human NK cell education by inhibitory receptors for MHC Class I. Immunity 2006; 25:331–342. ; Ward JP, Bonaparte MI, Barker E. HLA-C and HLA-E reduce antibody-dependent natural killer cell-mediated cytotoxicity of HIV-infected primary T cell blasts. AIDS 2004; 18:1769–1779. ; Romagné F, André P, Spee P, et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 2009; 114:2667–2677. ; Ramsuran V, Naranbhai V, Horowitz A, et al. Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells. Science 2018; 359:86–90. ; Johansson SE, Hejdeman B, Hinkula J, et al. NK cell activation by KIR-binding antibody 1-7F9 and response to HIV-infected autologous cells in viremic and controller HIV-infected patients. Clin Immunol 2010; 134:158–168. ; McWilliams EM, Mele JM, Cheney C, et al. Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia. Oncoimmunology 2016; 5:e1226720. ; Schober R, Brandus B, Laeremans T, et al. Multimeric immunotherapeutic complexes activating natural killer cells towards HIV-1 cure. J Transl Med 2023; 21:791. ; Astorga-Gamaza A, Perea D, Sanchez-Gaona N, et al. KLRG1 expression on natural killer cells is associated with HIV persistence, and its targeting promotes the reduction of the viral reservoir. Cell Rep Med 2023; 4:101202. ; Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020; 382:545–553. ; Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 2016; 16:566–581. ; Zhen A, Kamata M, Rezek V, et al. HIV-specific immunity derived from chimeric antigen receptor-engineered stem cells. Mol Ther 2015; 23:1358–1367. ; Tran AC, Zhang D, Byrn R, Roberts MR. Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol 1995; 155:1000–1009. ; Ni Z, Knorr DA, Bendzick L, et al. Expression of chimeric receptor CD4ζ by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo. Stem Cells 2014; 32:1021–1031. ; Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005; 106:376–383. ; Maldini CR, Claiborne DT, Okawa K, et al. Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nat Med 2020; 26:1776–1787. ; Töpfer K, Cartellieri M, Michen S, et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. J Immunol 2015; 194:3201–3212. ; Ali A, Kitchen SG, Chen ISY, et al. HIV-1-specific chimeric antigen receptors based on broadly neutralizing antibodies. J Virol 2016; 90:6999–7006. ; Lim RM, Rong L, Zhen A, Xie J. A universal CAR-NK cell targeting various epitopes of HIV-1 gp160. ACS Chem Biol 2020; 15:2299–2310. ; Churchill MJ, Gorry PR, Cowley D, et al. Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol 2006; 12:146–152. ; Chun T-W, Finzi D, Margolick J, et al. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med 1995; 1:1284–1290. ; Chun T-W, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997; 387:183–188. ; Perreau M, Savoye AL, De Crignis E, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med 2013; 210:143–156. ; Banga R, Procopio FA, Noto A, et al. PD-1(+) and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat Med 2016; 22:754–761. ; Fukazawa Y, Lum R, Okoye AA, et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med 2015; 21:132–139. ; Huot N, Jacquelin B, Garcia-Tellez T, et al. Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nat Med 2017; 23:1277–1286. ; Rahman SA, Billingsley JM, Sharma AA, et al. Lymph node CXCR5+ NK cells associate with control of chronic SHIV infection. JCI Insight 2022; 7:e155601. ; Guo AL, Jiao YM, Zhao QW, et al. Implications of the accumulation of CXCR5(+) NK cells in lymph nodes of HIV-1 infected patients. EBioMedicine 2022; 75:103794. ; Nikzad R, Angelo LS, Aviles-Padilla K, et al. Human natural killer cells mediate adaptive immunity to viral antigens. Sci Immunol 2019; 4:eaat8116. ; Schlums H, Cichocki F, Tesi B, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 2015; 42:443–456. ; Béziat V, Dalgard O, Asselah T, et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol 2012; 42:447–457. ; Hammer Q, Rückert T, Borst EM, et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat Immunol 2018; 19:453–463. ; Brunetta E, Fogli M, Varchetta S, et al. Chronic HIV-1 viremia reverses NKG2A/NKG2C ratio on natural killer cells in patients with human cytomegalovirus co-infection. AIDS 2010; 24:27–34. ; Gondois-Rey F, Chéret A, Granjeaud S, et al. NKG2C(+) memory-like NK cells contribute to the control of HIV viremia during primary infection: Optiprim-ANRS 147. Clin Transl Immunol 2017; 6:e150.
  • Entry Date(s): Date Created: 20240308 Date Completed: 20240404 Latest Revision: 20240620
  • Update Code: 20240620

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -