Zum Hauptinhalt springen

Functional knee brace use for 21 h leads to a longer duration to achieve peak vertical ground reaction forces and the removal of the brace after 17.5 h results in faster loading of the knee joint.

Rishiraj, N ; Taunton, JE ; et al.
In: Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA, Jg. 32 (2024-05-01), Heft 5, S. 1096-1104
academicJournal

Titel:
Functional knee brace use for 21 h leads to a longer duration to achieve peak vertical ground reaction forces and the removal of the brace after 17.5 h results in faster loading of the knee joint.
Autor/in / Beteiligte Person: Rishiraj, N ; Taunton, JE ; Lloyd-Smith, R ; Regan, W ; Niven, B ; Woollard, R
Zeitschrift: Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA, Jg. 32 (2024-05-01), Heft 5, S. 1096-1104
Veröffentlichung: 2024- : [Hoboken] : Wiley ; <i>Original Publication</i>: [Heidelberg, Germany] : Springer International, c1993-, 2024
Medientyp: academicJournal
ISSN: 1433-7347 (electronic)
DOI: 10.1002/ksa.12135
Schlagwort:
  • Humans
  • Male
  • Young Adult
  • Biomechanical Phenomena
  • Time Factors
  • Weight-Bearing
  • Adolescent
  • Adult
  • Device Removal
  • Braces
  • Knee Joint physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Knee Surg Sports Traumatol Arthrosc] 2024 May; Vol. 32 (5), pp. 1096-1104. <i>Date of Electronic Publication: </i>2024 Mar 09.
  • MeSH Terms: Braces* ; Knee Joint* / physiology ; Humans ; Male ; Young Adult ; Biomechanical Phenomena ; Time Factors ; Weight-Bearing ; Adolescent ; Adult ; Device Removal
  • References: Ackerman DR, Ptasinski AM, Edmond T, Dunleavy ML, Gallo RA. Prophylactic knee bracing in offensive linemen of the National Football League: a retrospective analysis of usage trends, player performance, and major knee injury. Orthop J Sports Med. 2023;11:23259671231191767. https://doi.org/10.1177/23259671231191767. ; American Association of Orthopaedic Surgeons. Position paper: the use of knee braces No. 1124. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2008. https://www.aaos.org/about/bylaws-policies/statements--resolutions/position-statements/. ; Bates NA, Ford KR, Myer GD, Hewett TE. Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump. Clin Biomech. 2013;28:796–799. https://doi.org/10.1016/j.clinbiomech.2013.07.004. ; Bates NA, Schilaty ND, Ueno R, Hewett TE. Timing of strain response of the ACL and MCL relative to impulse delivery during simulated landings leading up to ACL failure. J Appl Biomech. 2020;36:148–155. https://doi.org/10.1123/jab.2019-0308. ; Beaulieu ML, Ashton‐Miller JA, Wojtys EM. Loading mechanisms of the anterior cruciate ligament. Sports Biomech. 2023;22:1–29. https://doi.org/10.1080/14763141.2021.1916578. ; Behrens M, Mau‐Moeller A, Wassermann F, Plewka A, Bader R, Bruhn S. Repetitive jumping and sprinting until exhaustion alters hamstring reflex responses and tibial translation in males and females. J Orthop Res. 2015;33:1687–1692. https://doi.org/10.1002/jor.22935. ; British Association of Sport and Exercise Sciences. Biomechanical evaluation of movement in sport and exercise: the British Association of Sport and Exercise Sciences Guide. London: Routledge; 2017. https://doi.org/10.4324/9780203095546. ; Campbell B, Yaggie J, Cipriani D. Temporal influences of functional knee bracing on torque production of the lower extremity. J Sport Rehabil. 2006;15:215–227. https://doi.org/10.1123/jsr.15.3.215. ; Della Villa F, Buckthorpe M, Grassi A, Nabiuzzi A, Tosarelli F, Zaffagnini S, et al. Systematic video analysis of ACL injuries in professional male football (soccer): injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br J Sports Med. 2020;54:1423–1432. https://doi.org/10.1136/bjsports-2019-101247. ; DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med. 2004;32:477–483. https://doi.org/10.1177/0363546503258928. ; Dyhre‐Poulsen P, Krogsgaard MR. Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol. 2000;89:2191–2195. https://doi.org/10.1152/jappl.2000.89.6.2191. ; Ellison TM, Flagstaff I, Johnson AE. Sexual dimorphisms in anterior cruciate ligament injury: a current concepts review. Orthop J Sports Med. 2021;9:232596712110253. https://doi.org/10.1177/23259671211025304. ; Ewing KA, Begg RK, Galea MP, Lee PVS. Effects of prophylactic knee bracing on lower limb kinematics, kinetics, and energetics during double‐leg drop landing at 2 heights. Am J Sports Med. 2016;44:1753–1761. https://doi.org/10.1177/0363546516637178. ; Ferioli D, Schelling X, Bosio A, La Torre A, Rucco D, Rampinini E. Match activities in basketball games: comparison between different competitive levels. J Strength Cond Res. 2020;34:172–182. https://doi.org/10.1519/JSC.0000000000003039. ; Gembol S, Roemer K. Muscular activity in collegiate football linemen with and without a prefabricated functional knee brace. 32nd International Conference of Biomechanics in Sports. 2014. p. 772–775. https://ojs.ub.uni-konstanz.de/cpa/article/view/5916. ; Greene DL, Hamson KR, Bay RC, Bryce CD. Effects of protective knee bracing on speed and agility. Am J Sports Med. 2000;28:453–459. https://doi.org/10.1177/03635465000280040301. ; Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia, USA: Elsevier's Health Sciences; 2006. https://www.academia.edu/50986814/Textbook_of_medical_Physiology_Guyton_and_Hall_14_ed_2021. ; Hanlon C, Krzak JJ, Prodoehl J, Hall KD. Effect of injury prevention programs on lower extremity performance in youth athletes: a systematic review. Sports Health. 2020;12:12–22. https://doi.org/10.1177/1941738119861117. ; Herzog MM, Marshall SW, Lund JL, Pate V, Mack CD, Spang JT. Incidence of anterior cruciate ligament reconstruction among adolescent females in the United States, 2002 through 2014. JAMA Pediatr. 2017;171:808–810. https://doi.org/10.1001/jamapediatrics.2017.0740. ; Higo Y, Kuruma H. Effects of lower‐limb muscle fatigue, cardiopulmonary fatigue, and brain fatigue tasks on one‐legged landing motion. Phys Ther Res. 2021;24:264–271. https://doi.org/10.1298/ptr.E10104. ; Hughes G. A review of recent perspectives on biomechanical risk factors associated with anterior cruciate ligament injury. Res Sports Med. 2014;22:193–212. https://doi.org/10.1080/15438627.2014.881821. ; Kiapour AM, Quatman CE, Goel VK, Wordeman SC, Hewett TE, Demetropoulos CK. Timing sequence of multi‐planar knee kinematics revealed by physiologic cadaveric simulation of landing: implications for ACL injury mechanism. Clin Biomech. 2014;29:75–82. https://doi.org/10.1016/j.clinbiomech.2013.10.017. ; Kim J, Baek SY, Schlecht SH, Beaulieu ML, Bussau L, Chen J, et al. Anterior cruciate ligament microfatigue damage detected by collagen autofluorescence in situ. J Exp Orthop. 2022;9:74. https://doi.org/10.1186/s40634-022-00507-6. ; Kristianslund E, Krosshaug T, van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45:666–671. https://doi.org/10.1016/j.jbiomech.2011.12.011. ; Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R. Biomechanical analysis of anterior cruciate ligament injury mechanisms: three‐dimensional motion reconstruction from video sequences. Scand J Med Sci Sports. 2007;17:508–519. https://doi.org/10.1111/j.1600-0838.2006.00558.x. ; Latash ML. Muscle coactivation: definitions, mechanisms, and functions. J Neurophysiol. 2018;120:88–104. https://doi.org/10.1152/jn.00084.2018. ; Lipps DB, Wojtys EM, Ashton‐Miller JA. Anterior cruciate ligament fatigue failures in knees subjected to repeated simulated pivot landings. Am J Sports Med. 2013;41:1058–1066. https://doi.org/10.1177/0363546513477836. ; Lopes TJA, Simic M, Myer GD, Ford KR, Hewett TE, Pappas E. The effects of injury prevention programs on the biomechanics of landing tasks: a systematic review with meta‐analysis. Am J Sports Med. 2018;46:1492–1499. https://doi.org/10.1177/0363546517716930. ; Macefield VG, Norcliffe‐Kaufmann L, Goulding N, Palma J‐A, Fuente Mora C, Kaufmann H. Increasing cutaneous afferent feedback improves proprioceptive accuracy at the knee in patients with sensory ataxia. J Neurophysiol. 2016;115:711–716. https://doi.org/10.1152/jn.00148.2015. ; Maniar N, Cole MH, Bryant AL, Opar DA. Muscle force contributions to anterior cruciate ligament loading. Sports Med. 2022;52:1737–1750. https://doi.org/10.1007/s40279-022-01674-3. ; Marans HJ, Jackson RW, Piccinin J, Silver RL, Kennedy DK. Functional testing of braces for anterior cruciate ligament‐deficient knees. Can J Surg. 1991;34:167–172. ; Markolf K, Yamaguchi K, Matthew J, McAllister D. Effects of tibiofemoral compression on ACL forces and knee kinematics under combined knee loads. J Orthop Res. 2019;37:631–639. https://doi.org/10.1002/jor.24233. ; Moon J, Kim H, Lee J, Panday SB. Effect of wearing a knee brace or sleeve on the knee joint and anterior cruciate ligament force during drop jumps: a clinical intervention study. Knee. 2018;25:1009–1015. https://doi.org/10.1016/j.knee.2018.07.017. ; Otsuki R, Del Bel MJ, Benoit DL. Sex differences in muscle activation patterns associated with anterior cruciate ligament injury during landing and cutting tasks: a systematic review. J Electromyography Kinesiol. 2021;60:102583. https://doi.org/10.1016/j.jelekin.2021.102583. ; Padua DA, DiStefano LJ, Hewett TE, Garrett WE, Marshall SW, Golden GM, et al. National Athletic Trainers' Association position statement: prevention of anterior cruciate ligament injury. J Athl Train. 2018;53:5–19. https://doi.org/10.4085/1062-6050-99-16. ; Peng HT. Changes in biomechanical properties during drop jumps of incremental height. J Strength Cond Res. 2011;25:2510–2518. https://doi.org/10.1519/JSC.0b013e318201bcb3. ; Ramsey DK, Wretenberg PF, Lamontagne M, Németh G. Electromyographic and biomechanic analysis of anterior cruciate ligament deficiency and functional knee bracing. Clin Biomech. 2003;18:28–34. https://doi.org/10.1016/S0268-0033(02)00138-9. ; Renner KE, Peebles AT, Socha JJ, Queen RM. The impact of sampling frequency on ground reaction force variables. J Biomech. 2022;135:111034. https://doi.org/10.1016/j.jbiomech.2022.111034. ; Rishiraj N, Taunton JE, Lloyd‐Smith R, Regan W, Niven B, Woollard R. Functional knee brace use effect on peak vertical ground reaction forces during drop jump landing. Knee Surg Sports Traumatol Arthrosc. 2012;20:2405–2412. https://doi.org/10.1007/s00167-012-1911-z. ; Romanchuk NJ, Smale KB, Del Bel MJ, Benoit DL. Divergence analysis of failed and successful unanticipated single‐leg landings reveals the importance of the flight phase and upper body biomechanics. J Biomech. 2020;109:109879. https://doi.org/10.1016/j.jbiomech.2020.109879. ; Seyedahmadi M, Minoonejad H, Karimizadeh Ardakani M, Heidari Z, Bayattork M, Akbari H. What are gender differences in lower limb muscle activity during jump‐landing tasks? A systematic review and meta‐analysis. BMC Sports Sci Med Rehabil. 2022;14:77. https://doi.org/10.1186/s13102-022-00469-3. ; Simpson JD, Miller BL, O'Neal EK, Chander H, Knight AC. Ground reaction forces during a drop vertical jump: impact of external load training. Hum Movement Sci. 2018;59:12–19. https://doi.org/10.1016/j.humov.2018.03.011. ; Tamura A, Akasaka K, Otsudo T, Sawada Y, Okubo Y, Shiozawa J, et al. Fatigue alters landing shock attenuation during a single‐leg vertical drop jump. Orthop J Sports Med. 2016;4:232596711562641. https://doi.org/10.1177/2325967115626412. ; Taylor JB, Waxman JP, Richter SJ, Shultz SJ. Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: a systematic review and meta‐analysis. Br J Sports Med. 2015;49:79–87. https://doi.org/10.1136/bjsports-2013-092358. ; Tuang BHH, Ng ZQ, Li JZ, Sirisena D. Biomechanical effects of prophylactic knee bracing on anterior cruciate ligament injury risk: a systematic review. Clin J Sport Med. 2023;33:78–89. https://doi.org/10.1097/JSM.0000000000001052. ; Walsh M, Boling MC, McGrath M, Blackburn JT, Padua DA. Lower extremity muscle activation and knee flexion during a jump‐landing task. J Athl Train. 2012;47:406–413. https://doi.org/10.4085/1062-6050-47.4.17. ; Weinhandl JT, O'Connor KM. Influence of ground reaction force perturbations on anterior cruciate ligament loading during sidestep cutting. Comput Methods Biomech Biomed Engin. 2017;20:1394–1402. https://doi.org/10.1080/10255842.2017.1366993. ; Woo SLY, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur‐anterior cruciate ligament‐tibia complex: the effects of specimen age and orientation. Am J Sports Med. 1991;19:217–225. https://doi.org/10.1177/036354659101900303. ; Yu B, Herman D, Preston J, Lu W, Kirkendall DT, Garrett WE. Immediate effects of a knee brace with a constraint to knee extension on knee kinematics and ground reaction forces in a stop‐jump task. Am J Sports Med. 2004;32:1136–1143. https://doi.org/10.1177/0363546503262204.
  • Contributed Indexing: Keywords: functional knee brace; kinetics; knee joint loading; noncontact ACL injury; prevention
  • Entry Date(s): Date Created: 20240310 Date Completed: 20240423 Latest Revision: 20240423
  • Update Code: 20240424

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -