Zum Hauptinhalt springen

Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales.

Tapia-Rojo, R ; Mora, M ; et al.
In: Nature protocols, Jg. 19 (2024-06-01), Heft 6, S. 1779-1806
academicJournal

Titel:
Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales.
Autor/in / Beteiligte Person: Tapia-Rojo, R ; Mora, M ; Garcia-Manyes, S
Zeitschrift: Nature protocols, Jg. 19 (2024-06-01), Heft 6, S. 1779-1806
Veröffentlichung: London, UK : Nature Pub. Group, 2006-, 2024
Medientyp: academicJournal
ISSN: 1750-2799 (electronic)
DOI: 10.1038/s41596-024-00965-5
Schlagwort:
  • Single Molecule Imaging methods
  • Magnetics methods
  • Nanotechnology methods
  • Protein Conformation
  • Protein Folding
  • Proteins chemistry
  • Proteins metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Nat Protoc] 2024 Jun; Vol. 19 (6), pp. 1779-1806. <i>Date of Electronic Publication: </i>2024 Mar 11.
  • MeSH Terms: Proteins* / chemistry ; Proteins* / metabolism ; Single Molecule Imaging / methods ; Magnetics / methods ; Nanotechnology / methods ; Protein Conformation ; Protein Folding
  • References: Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013). (PMID: 23990565397654810.1126/science.1240104) ; De Belly, H., Paluch, E. K. & Chalut, K. J. Interplay between mechanics and signalling in regulating cell fate. Nat. Rev. Mol. Cell Biol. 23, 465–480 (2022). (PMID: 3536581610.1038/s41580-022-00472-z) ; Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014). (PMID: 25355507933922210.1038/nrm3903) ; Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer 17, 131–140 (2017). (PMID: 2790933910.1038/nrc.2016.123) ; Dumortier, J. G. et al. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 365, 465–468 (2019). (PMID: 3137160810.1126/science.aaw7709) ; Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018). (PMID: 30185907614838510.1038/s41586-018-0479-2) ; Pesce, M. et al. Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat. Rev. Cardiol. 20, 309–324 (2022). (PMID: 3637643710.1038/s41569-022-00799-2) ; Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020). (PMID: 33239794847743510.1038/s41586-020-2933-1) ; Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017). (PMID: 28757604631270510.1038/nri.2017.74) ; Romani, P., Valcarcel-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. Mol. Cell Biol. 22, 22–38 (2021). (PMID: 3318827310.1038/s41580-020-00306-w) ; Romani, P. et al. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat. Cell Biol. 24, 168–180 (2022). (PMID: 35165418761574510.1038/s41556-022-00843-w) ; Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009). (PMID: 19197333266895410.1038/nrm2597) ; Chemla, Y. R. et al. Mechanism of force generation of a viral DNA packaging motor. Cell 122, 683–692 (2005). (PMID: 1614310110.1016/j.cell.2005.06.024) ; Ranade, S. S., Syeda, R. & Patapoutian, A. Mechanically activated ion channels. Neuron 87, 1162–1179 (2015). (PMID: 26402601458260010.1016/j.neuron.2015.08.032) ; Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008). (PMID: 18511917339740210.1038/nmeth.1218) ; Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2018). (PMID: 10.1038/s42254-018-0001-7) ; Bustamante, C. J., Chemla, Y. R., Liu, S. & Wang, M. D. Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Prim. 1, 25 (2021). (PMID: 10.1038/s43586-021-00021-6) ; Popa, I., Kosuri, P., Alegre-Cebollada, J., Garcia-Manyes, S. & Fernandez, J. M. Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy. Nat. Protoc. 8, 1261–1276 (2013). (PMID: 23744288467694110.1038/nprot.2013.056) ; Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 (2002). (PMID: 1219855110.1038/nature00938) ; Echelman, D. J., Lee, A. Q. & Fernandez, J. M. Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin. J. Biol. Chem. 292, 8988–8997 (2017). (PMID: 28348083544813010.1074/jbc.M117.777466) ; Milles, L. F., Schulten, K., Gaub, H. E. & Bernardi, R. C. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science 359, 1527–1533 (2018). (PMID: 29599244645193210.1126/science.aar2094) ; Mora, M., Stannard, A. & Garcia-Manyes, S. The nanomechanics of individual proteins. Chem. Soc. Rev. 49, 6816–6832 (2020). (PMID: 3292943610.1039/D0CS00426J) ; Dudko, O. K., Hummer, G. & Szabo, A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc. Natl Acad. Sci. USA 105, 15755–15760 (2008). (PMID: 18852468257292110.1073/pnas.0806085105) ; Cecconi, C., Shank, E. A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005). (PMID: 1617947910.1126/science.1116702) ; Stigler, J., Ziegler, F., Gieseke, A., Gebhardt, J. C. & Rief, M. The complex folding network of single calmodulin molecules. Science 334, 512–516 (2011). (PMID: 2203443310.1126/science.1207598) ; Neupane, K., Manuel, A. P. & Woodside, M. T. Protein folding trajectories can be described quantitatively by one-dimensional diffusion over measured energy landscapes. Nat. Phys. 12, 700–703 (2016). (PMID: 10.1038/nphys3677) ; Woodside, M. T. & Block, S. M. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu. Rev. Biophys. 43, 19–39 (2014). (PMID: 24895850460957310.1146/annurev-biophys-051013-022754) ; Kaiser, C. M., Goldman, D. H., Chodera, J. D., Tinoco, I. Jr. & Bustamante, C. The ribosome modulates nascent protein folding. Science 334, 1723–1727 (2011). (PMID: 22194581417236610.1126/science.1209740) ; Lipfert, J., Kerssemakers, J. W., Jager, T. & Dekker, N. H. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat. Methods 7, 977–980 (2010). (PMID: 2095317310.1038/nmeth.1520) ; Ding, F. et al. Single-molecule mechanical identification and sequencing. Nat. Methods 9, 367–372 (2012). (PMID: 22406857352817610.1038/nmeth.1925) ; Hodeib, S. et al. Single molecule studies of helicases with magnetic tweezers. Methods 105, 3–15 (2016). (PMID: 2737112110.1016/j.ymeth.2016.06.019) ; Lionnet, T. et al. Magnetic trap construction. Cold Spring Harb. Protoc. 2012, 133–138 (2012). (PMID: 2219426010.1101/pdb.prot067496) ; Rivas-Pardo, J. A. et al. Work done by titin protein folding assists muscle contraction. Cell Rep. 14, 1339–1347 (2016). (PMID: 26854230486525510.1016/j.celrep.2016.01.025) ; Chen, H. et al. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces. J. Am. Chem. Soc. 137, 3540–3546 (2015). (PMID: 25726700444671110.1021/ja5119368) ; Bauer, M. S. et al. A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. Proc. Natl Acad. Sci. USA 119, e2114397119 (2022). (PMID: 35312342916851410.1073/pnas.2114397119) ; Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016). (PMID: 27384267494105110.1038/ncomms11966) ; Popa, I. et al. A HaloTag anchored ruler for week-long studies of protein dynamics. J. Am. Chem. Soc. 138, 10546–10553 (2016). (PMID: 27409974551059810.1021/jacs.6b05429) ; Lof, A. et al. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proc. Natl Acad. Sci. USA 116, 18798–18807 (2019). (PMID: 31462494675458310.1073/pnas.1901794116) ; Zhao, X., Zeng, X., Lu, C. & Yan, J. Studying the mechanical responses of proteins using magnetic tweezers. Nanotechnology 28, 414002 (2017). (PMID: 2876650610.1088/1361-6528/aa837e) ; Choi, H. K. et al. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. Science 366, 1150–1156 (2019). (PMID: 31780561738237010.1126/science.aaw8208) ; Choi, H. K. et al. Evolutionary balance between foldability and functionality of a glucose transporter. Nat. Chem. Biol. 18, 713–723 (2022). (PMID: 35484435761294510.1038/s41589-022-01002-w) ; Choi, H. K., Kim, H. G., Shon, M. J. & Yoon, T. Y. High-resolution single-molecule magnetic tweezers. Annu. Rev. Biochem. 91, 33–59 (2022). (PMID: 3528747210.1146/annurev-biochem-032620-104637) ; Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992). (PMID: 143981910.1126/science.1439819) ; Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996). (PMID: 859695110.1126/science.271.5257.1835) ; Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002). (PMID: 12023254130211910.1016/S0006-3495(02)75672-5) ; Maier, B., Bensimon, D. & Croquette, V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Natl Acad. Sci. USA 97, 12002–12007 (2000). (PMID: 110502321728410.1073/pnas.97.22.12002) ; Dekker, N. H. et al. The mechanism of type IA topoisomerases. Proc. Natl Acad. Sci. USA 99, 12126–12131 (2002). (PMID: 1216766812940910.1073/pnas.132378799) ; Crut, A., Koster, D. A., Seidel, R., Wiggins, C. H. & Dekker, N. H. Fast dynamics of supercoiled DNA revealed by single-molecule experiments. Proc. Natl Acad. Sci. USA 104, 11957–11962 (2007). (PMID: 17623785192454310.1073/pnas.0700333104) ; England, C. G., Luo, H. & Cai, W. HaloTag technology: a versatile platform for biomedical applications. Bioconjug. Chem. 26, 975–986 (2015). (PMID: 25974629448233510.1021/acs.bioconjchem.5b00191) ; Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012). (PMID: 22366317331137010.1073/pnas.1115485109) ; Tapia-Rojo, R., Eckels, E. C. & Fernandez, J. M. Ephemeral states in protein folding under force captured with a magnetic tweezers design. Proc. Natl Acad. Sci. USA 116, 7873–7878 (2019). (PMID: 30936303647543110.1073/pnas.1821284116) ; Stannard, A. et al. Molecular fluctuations as a ruler of force-induced protein conformations. Nano Lett. 21, 2953–2961 (2021). (PMID: 33765390761071410.1021/acs.nanolett.1c00051) ; Tapia-Rojo, R., Alonso-Caballero, A. & Fernandez, J. M. Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. Sci. Adv. 6, eaaz4707 (2020). (PMID: 32494739724431110.1126/sciadv.aaz4707) ; Franz, F. et al. Allosteric activation of vinculin by talin. Nat. Commun. 14, 4311 (2023). (PMID: 374638951035420210.1038/s41467-023-39646-4) ; Tapia-Rojo, R. et al. Enhanced statistical sampling reveals microscopic complexity in the talin mechanosensor folding energy landscape. Nat. Phys. 19, 52–60 (2023). (PMID: 3666016410.1038/s41567-022-01808-4) ; Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015). (PMID: 26523364466288810.1038/ncb3268) ; Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001). (PMID: 11402062219203410.1083/jcb.153.6.1175) ; Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010). (PMID: 20613844290188810.1038/nature09198) ; Garcia-Manyes, S. et al. Single-molecule force spectroscopy predicts a misfolded, domain-swapped conformation in human γD-crystallin protein. J. Biol. Chem. 291, 4226–4235 (2016). (PMID: 2670347610.1074/jbc.M115.673871) ; Mora, M. et al. A single-molecule strategy to capture non-native intramolecular and intermolecular protein disulfide bridges. Nano Lett. 22, 3922–3930 (2022). (PMID: 35549281913692110.1021/acs.nanolett.2c00043) ; Petrosyan, R., Patra, S., Rezajooei, N., Garen, C. R. & Woodside, M. T. Unfolded and intermediate states of PrP play a key role in the mechanism of action of an antiprion chaperone. Proc. Natl Acad. Sci. USA 118, e2010213118 (2021). (PMID: 33619087793634210.1073/pnas.2010213118) ; Gupta, A. N. et al. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein. Nat. Commun. 7, 12058 (2016). (PMID: 27346148493125210.1038/ncomms12058) ; Sen Mojumdar, S. et al. Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Nat. Commun. 8, 1881 (2017). (PMID: 29192167570942610.1038/s41467-017-01996-1) ; Yao, M. et al. Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat. Commun. 5, 4525 (2014). (PMID: 2507773910.1038/ncomms5525) ; Dahal, N., Sharma, S., Phan, B., Eis, A. & Popa, I. Mechanical regulation of talin through binding and history-dependent unfolding. Sci. Adv. 8, eabl7719 (2022). (PMID: 3585749110.1126/sciadv.abl7719) ; Kemmerich, F. E. et al. Simultaneous single-molecule force and fluorescence sampling of DNA nanostructure conformations using magnetic tweezers. Nano Lett. 16, 381–386 (2016). (PMID: 2663202110.1021/acs.nanolett.5b03956) ; Ivanov, I. E. et al. Multimodal measurements of single-molecule dynamics using FluoRBT. Biophys. J. 114, 278–282 (2018). (PMID: 2924815010.1016/j.bpj.2017.11.017) ; Tapia-Rojo, R., Alonso-Caballero, A. & Fernandez, J. M. Talin folding as the tuning fork of cellular mechanotransduction. Proc. Natl Acad. Sci. USA 117, 21346–21353 (2020). (PMID: 32817549747463510.1073/pnas.2004091117) ; Alonso-Caballero, A. et al. Protein folding modulates the chemical reactivity of a Gram-positive adhesin. Nat. Chem. 13, 172–181 (2021). (PMID: 3325788710.1038/s41557-020-00586-x) ; Guo, H. A simple algorithm for fitting a gaussian function. In Streamlining Digital Signal Processing 297–305 (John Wiley & Sons, 2012). ; Fonnum, G., Johansson, C., Molteberg, A., Mørup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005). (PMID: 10.1016/j.jmmm.2005.01.041) ; Ostrofet, E., Papini, F. S. & Dulin, D. Correction-free force calibration for magnetic tweezers experiments. Sci. Rep. 8, 15920 (2018). (PMID: 30374099620602210.1038/s41598-018-34360-4) ; Buschow, K. H. J., Long, G. J. & Grandjean, F. High Density Digital Recording (Springer, 1993). ; Liu, R., Garcia-Manyes, S., Sarkar, A., Badilla, C. L. & Fernandez, J. M. Mechanical characterization of protein L in the low-force regime by electromagnetic tweezers/evanescent nanometry. Biophys. J. 96, 3810–3821 (2009). (PMID: 19413987271140610.1016/j.bpj.2009.01.043) ; Valle-Orero, J. et al. Proteins breaking bad: a free energy perspective. J. Phys. Chem. Lett. 8, 3642–3647 (2017). (PMID: 28723106595754110.1021/acs.jpclett.7b01509) ; Alegre-Cebollada, J., Badilla, C. L. & Fernandez, J. M. Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes. J. Biol. Chem. 285, 11235–11242 (2010). (PMID: 20139067285700110.1074/jbc.M110.102962) ; Schlierf, M., Li, H. & Fernandez, J. M. The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc. Natl Acad. Sci. USA 101, 7299–7304 (2004). (PMID: 1512381640991310.1073/pnas.0400033101) ; Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997). (PMID: 9083660118435010.1016/S0006-3495(97)78802-7) ; Zhang, Y., Jiao, J. & Rebane, A. A. Hidden Markov modeling with detailed balance and its application to single protein folding. Biophys. J. 111, 2110–2124 (2016). (PMID: 27851936511295110.1016/j.bpj.2016.09.045) ; McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006). (PMID: 16766620154430710.1529/biophysj.106.082487) ; Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006). (PMID: 1660579310.1103/PhysRevLett.96.108101) ; Bullerjahn, J. T., Sturm, S. & Kroy, K. Theory of rapid force spectroscopy. Nat. Commun. 5, 4463 (2014). (PMID: 2507991110.1038/ncomms5463)
  • Grant Information: 212218 United Kingdom WT_ Wellcome Trust; RL 2016-015 Leverhulme Trust; BB/V003518/1 RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); RSWF/R3/183006 Royal Society
  • Substance Nomenclature: 0 (Proteins)
  • Entry Date(s): Date Created: 20240312 Date Completed: 20240611 Latest Revision: 20240611
  • Update Code: 20240612

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -