Zum Hauptinhalt springen

A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology.

Georgin, J ; Franco, DSP ; et al.
In: Environmental science and pollution research international, Jg. 31 (2024-04-01), Heft 17, S. 24679-24712
Online academicJournal

Titel:
A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology.
Autor/in / Beteiligte Person: Georgin, J ; Franco, DSP ; Manzar, MS ; Meili, L ; El Messaoudi, N
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 31 (2024-04-01), Heft 17, S. 24679-24712
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2024
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-024-32876-z
Schlagwort:
  • Animals
  • Humans
  • Adsorption
  • Estradiol chemistry
  • Technology
  • Water
  • Ecosystem
  • Water Pollutants, Chemical analysis
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Environ Sci Pollut Res Int] 2024 Apr; Vol. 31 (17), pp. 24679-24712. <i>Date of Electronic Publication: </i>2024 Mar 15.
  • MeSH Terms: Ecosystem* ; Water Pollutants, Chemical* / analysis ; Animals ; Humans ; Adsorption ; Estradiol / chemistry ; Technology ; Water
  • References: Abdel Maksoud MIA, Fahim RA, Bedir AG et al (2022) Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. Environ Chem Lett 20:519–562. (PMID: 10.1007/s10311-021-01351-3) ; Abtahi SM, Petermann M, Juppeau Flambard A et al (2018) Micropollutants removal in tertiary moving bed biofilm reactors (MBBRs): Contribution of the biofilm and suspended biomass. Sci Total Environ 643:1464–1480. https://doi.org/10.1016/j.scitotenv.2018.06.303. (PMID: 10.1016/j.scitotenv.2018.06.303) ; Adeel M, Song X, Wang Y et al (2017) Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107–119. https://doi.org/10.1016/j.envint.2016.12.010. (PMID: 10.1016/j.envint.2016.12.010) ; Adler AJ, Nelson JF (1988) Aging and chronic estradiol exposure impair estradiol-induced cornification but not proliferation of vaginal epithelium in C57BL/6J mice. Biol Reprod 38:175–182. https://doi.org/10.1095/biolreprod38.1.175. (PMID: 10.1095/biolreprod38.1.175) ; Ahmad ZU, Yao L, Lian Q et al (2020) The use of artificial neural network (ANN) for modeling adsorption of sunset yellow onto neodymium modified ordered mesoporous carbon. Chemosphere 256:127081. https://doi.org/10.1016/j.chemosphere.2020.127081. (PMID: 10.1016/j.chemosphere.2020.127081) ; Ahmad T, Manzar MS, Georgin J et al (2023) Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water. J Water Process Eng 53:103623. https://doi.org/10.1016/j.jwpe.2023.103623. (PMID: 10.1016/j.jwpe.2023.103623) ; Ahmadi G (2004) ME437 Class Notes: London - Van der Waals Force, pp 1–7. ; Ahmed MB, Zhou JL, Ngo HH et al (2018) Sorptive removal of phenolic endocrine disruptors by functionalized biochar: competitive interaction mechanism, removal efficacy and application in wastewater. Chem Eng J 335:801–811. https://doi.org/10.1016/j.cej.2017.11.041. (PMID: 10.1016/j.cej.2017.11.041) ; Ahmed MJ, Hameed BH, Hummadi EH (2020) Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr Polym 247. https://doi.org/10.1016/j.carbpol.2020.116690. ; Almazrouei B, Islayem D, Alskafi F et al (2023) Steroid hormones in wastewater: Sources, treatments, environmental risks, and regulations. Emerg Contam 9. https://doi.org/10.1016/j.emcon.2023.100210. ; Almuqrin AH, Wjihi S, Aouaini F, Ben LA (2020) New insights on physico-chemical investigation of bisphosphonate adsorption isotherm into apatite substrate using statistical physics treatment. J Mol Liq 310:113230. https://doi.org/10.1016/j.molliq.2020.113230. (PMID: 10.1016/j.molliq.2020.113230) ; Alvarez-Corena JR, Bergendahl JA, Hart FL (2016) Advanced oxidation of five contaminants in water by UV/TiO2: reaction kinetics and byproducts identification. J Environ Manag 181:544–551. https://doi.org/10.1016/j.jenvman.2016.07.015. (PMID: 10.1016/j.jenvman.2016.07.015) ; Andaluri G, Suri RPS (2017) Oxidative sonication of estrogen hormones in water and municipal wastewater. Res J Environ Sci 11:71–81. https://doi.org/10.3923/rjes.2017.71.81. (PMID: 10.3923/rjes.2017.71.81) ; Andaluri G, Rokhina EV, Suri RPS (2012) Evaluation of relative importance of ultrasound reactor parameters for the removal of estrogen hormones in water. Ultrason Sonochem 19:953–958. https://doi.org/10.1016/j.ultsonch.2011.12.005. (PMID: 10.1016/j.ultsonch.2011.12.005) ; Anjali R, Shanthakumar S (2019) Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. J Environ Manag 246:51–62. https://doi.org/10.1016/j.jenvman.2019.05.090. (PMID: 10.1016/j.jenvman.2019.05.090) ; Arnold KE, Brown AR, Brown AR et al (2014) Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems. Philos Trans R Soc B Biol Sci 369. https://doi.org/10.1098/rstb.2013.0569. ; Arslan DŞ, Ertap H, Şenol ZM et al (2023) Preparation of polyacrylamide titanium dioxide hybrid nanocomposite by direct polymerization and its applicability in removing crystal violet from aqueous solution. J Polym Environ 1–15. https://doi.org/10.1007/S10924-023-03004-8. ; Aziz M, Ojumu T (2020) Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. Membranes (Basel) 10. https://doi.org/10.3390/membranes10030037. ; Bai X, Qin C, Feng R, Ye Z (2017) Binary adsorption of 17β-estradiol and bisphenol A on superparamagnetic amino-functionalized graphene oxide nanocomposites. Mater Chem Phys 189:96–104. https://doi.org/10.1016/j.matchemphys.2016.12.011. (PMID: 10.1016/j.matchemphys.2016.12.011) ; Barbosa MO, Moreira NFF, Ribeiro AR et al (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res 94:257–279. https://doi.org/10.1016/j.watres.2016.02.047. (PMID: 10.1016/j.watres.2016.02.047) ; Barreiros L, Queiroz JF, Magalhães LM et al (2016) Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices—a review. Microchem J 126:243–262. https://doi.org/10.1016/j.microc.2015.12.003. (PMID: 10.1016/j.microc.2015.12.003) ; Ben W, Zhu B, Yuan X et al (2018) Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: comparison of wastewater treatment processes. Water Res 130:38–46. https://doi.org/10.1016/j.watres.2017.11.057. (PMID: 10.1016/j.watres.2017.11.057) ; Boer DG, Langerak J, Pescarmona PP (2023) Zeolites as selective adsorbents for CO2 separation. ACS Appl Energy Mater 6:2634–2656. https://doi.org/10.1021/acsaem.2c03605. (PMID: 10.1021/acsaem.2c03605) ; Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239:229–246. https://doi.org/10.1016/j.desal.2008.03.020. (PMID: 10.1016/j.desal.2008.03.020) ; Brawer JR, Naftolin F, Martin J, Sonnenschein C (1978) Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat. Endocrinology 103:501–512. https://doi.org/10.1210/endo-103-2-501. (PMID: 10.1210/endo-103-2-501) ; Brienza M, Mahdi Ahmed M, Escande A et al (2014) Relevance of a photo-Fenton like technology based on peroxymonosulphate for 17β-estradiol removal from wastewater. Chem Eng J 257:191–199. https://doi.org/10.1016/j.cej.2014.07.061. (PMID: 10.1016/j.cej.2014.07.061) ; Chandran DG, Muruganandam L, Biswas R (2023) A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials. Environ Sci Pollut Res 30:110010–110046. https://doi.org/10.1007/s11356-023-30192-6. (PMID: 10.1007/s11356-023-30192-6) ; Charman C, Williams H (2003) The use of corticosteroids and corticosteroid phobia in atopic dermatitis. Clin Dermatol 21:193–200. https://doi.org/10.1016/S0738-081X(02)00368-1. (PMID: 10.1016/S0738-081X(02)00368-1) ; Chen W, Habibul N, Liu XY et al (2015) FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter. Environ Sci Technol 49:2052–2058. https://doi.org/10.1021/es5049495. (PMID: 10.1021/es5049495) ; Chi GT, Churchley J, Huddersman KD (2013) Pilot-scale removal of trace steroid hormones and pharmaceuticals and personal care products from municipal wastewater using a heterogeneous fenton’s catalytic process. Int J Chem Eng 2013. https://doi.org/10.1155/2013/760915. ; Chin CT, Lee SW-L, Sawhney JPS et al (2015) Characteristics and outcomes of medically managed patients with non-St-segment elevation acute coronary syndromes: insights from the multinational Epicor Asia study. J Am Coll Cardiol 65:A29. https://doi.org/10.1016/s0735-1097(15)60029-8. (PMID: 10.1016/s0735-1097(15)60029-8) ; Ciğeroğlu Z, Kazan-Kaya ES, El Messaoudi N et al (2023) Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: optimization, modeling, and theoretical calculation. J Mol Liq 369:120866. https://doi.org/10.1016/J.MOLLIQ.2022.120866. (PMID: 10.1016/J.MOLLIQ.2022.120866) ; Coello-Garcia T, Curtis TP, Mrozik W, Davenport RJ (2019) Enhanced estrogen removal in activated sludge processes through the optimization of the hydraulic flow pattern. Water Res 164:114905. https://doi.org/10.1016/j.watres.2019.114905. (PMID: 10.1016/j.watres.2019.114905) ; Couto CF, Lange LC, Amaral MCS (2019) Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—a review. J Water Process Eng 32:100927. https://doi.org/10.1016/j.jwpe.2019.100927. (PMID: 10.1016/j.jwpe.2019.100927) ; Dai MY, Liu YG, Zeng GM et al (2019) Adsorption studies of 17β-estradiol from aqueous solution using a novel stabilized Fe–Mn binary oxide nanocomposite. Environ Sci Pollut Res 26:7614–7626. https://doi.org/10.1007/s11356-019-04173-7. (PMID: 10.1007/s11356-019-04173-7) ; Dang ZC, Kienzler A (2019) Changes in fish sex ratio as a basis for regulating endocrine disruptors. Environ Int 130:104928. https://doi.org/10.1016/j.envint.2019.104928. (PMID: 10.1016/j.envint.2019.104928) ; Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938. https://doi.org/10.1289/ehp.99107s6907. (PMID: 10.1289/ehp.99107s6907) ; Davoodbeygi Y, Askari M, Salehi E, Kheirieh S (2023) A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: process configurations, separation targets, and materials applied. J Environ Manag 335. https://doi.org/10.1016/j.jenvman.2023.117577. ; de Oliveira PV, Zanella I, Bulhões LOS, Fagan SB (2021) Adsorption of 17 β-estradiol in graphene oxide through the competing methanol co-solvent: Experimental and computational analysis. J Mol Liq 321. https://doi.org/10.1016/j.molliq.2020.114738. ; de Sales PF, Magriotis ZM, Rossi MALS et al (2015) Comparative analysis of tropaeolin adsorption onto raw and acid-treated kaolinite: optimization by Response Surface Methodology. J Environ Manag 151:144–152. https://doi.org/10.1016/j.jenvman.2014.12.008. (PMID: 10.1016/j.jenvman.2014.12.008) ; Di Marcantonio C, Chiavola A, Dossi S et al (2020) Occurrence, seasonal variations and removal of organic micropollutants in 76 wastewater treatment plants. Process Saf Environ Prot 141:61–72. https://doi.org/10.1016/j.psep.2020.05.032. (PMID: 10.1016/j.psep.2020.05.032) ; Diamanti-Kandarakis E, Bourguignon JP, Giudice LC et al (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30:293–342. https://doi.org/10.1210/er.2009-0002. (PMID: 10.1210/er.2009-0002) ; Dias R, Daam MA, Diniz M, Maurício R (2023) Drinking water treatment residuals, a low-cost and environmentally friendly adsorbent for the removal of hormones—a review. J Water Process Eng 56. https://doi.org/10.1016/j.jwpe.2023.104322. ; Díaz-Garduño B, Pintado-Herrera MG, Biel-Maeso M et al (2017) Environmental risk assessment of effluents as a whole emerging contaminant: Efficiency of alternative tertiary treatments for wastewater depuration. Water Res 119:136–149. https://doi.org/10.1016/j.watres.2017.04.021. (PMID: 10.1016/j.watres.2017.04.021) ; Du B, Fan G, Yu W et al (2020a) Occurrence and risk assessment of steroid estrogens in environmental water samples: a five-year worldwide perspective. Environ Pollut 267:115405. https://doi.org/10.1016/j.envpol.2020.115405. (PMID: 10.1016/j.envpol.2020.115405) ; Du Z, Li K, Zhou S et al (2020b) Degradation of ofloxacin with heterogeneous photo-Fenton catalyzed by biogenic Fe-Mn oxides. Chem Eng J 380:122427. https://doi.org/10.1016/j.cej.2019.122427. (PMID: 10.1016/j.cej.2019.122427) ; Duan Q, Li X, Wu Z et al (2019) Adsorption of 17β-estradiol from aqueous solutions by a novel hierarchically nitrogen-doped porous carbon. J Colloid Interface Sci 533:700–708. https://doi.org/10.1016/j.jcis.2018.09.007. (PMID: 10.1016/j.jcis.2018.09.007) ; EL Kaim Billah R, Zaghloul A, Ahsaine HA et al (2022) Methyl orange adsorption studies on glutaraldehyde cross-linking chitosan/fluorapatite-based natural phosphate composite. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2130690. (PMID: 10.1080/03067319.2022.2130690) ; El Khomri M, El Messaoudi N, Dbik A et al (2022) Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigment Resin Technol 51:477–488. https://doi.org/10.1108/PRT-04-2021-0045. (PMID: 10.1108/PRT-04-2021-0045) ; El Messaoudi N, Ciğeroğlu Z, Şenol ZM et al (2023a) A comparative review of the adsorption and photocatalytic degradation of tetracycline in aquatic environment by g-C3N4-based materials. J Water Process Eng 55:104150. https://doi.org/10.1016/J.JWPE.2023.104150. (PMID: 10.1016/J.JWPE.2023.104150) ; El Messaoudi N, Ciğeroğlu Z, Şenol ZM et al (2023b) Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption. Adv Chem Pollution, Environ Manag Prot. https://doi.org/10.1016/BS.APMP.2023.06.016. (PMID: 10.1016/BS.APMP.2023.06.016) ; El Mouden A, El Guerraf A, El Messaoudi N et al (2022) Date stone functionalized with 3-Aminopropyltriethoxysilane as a potential biosorbent for heavy metal ions removal from aqueous solution. Chem Africa 5:745–759. https://doi.org/10.1007/S42250-022-00350-3. (PMID: 10.1007/S42250-022-00350-3) ; El Mouden A, El Messaoudi N, El Guerraf A et al (2023a) Multifunctional cobalt oxide nanocomposites for efficient removal of heavy metals from aqueous solutions. Chemosphere 317:137922. https://doi.org/10.1016/J.CHEMOSPHERE.2023.137922. (PMID: 10.1016/J.CHEMOSPHERE.2023.137922) ; El Mouden A, El Messaoudi N, El Guerraf A et al (2023b) Removal of cadmium and lead ions from aqueous solutions by novel dolomite-quartz@Fe3O4 nanocomposite fabricated as nanoadsorbent. Environ Res 225:115606. https://doi.org/10.1016/J.ENVRES.2023.115606. (PMID: 10.1016/J.ENVRES.2023.115606) ; Etale A, Onyianta AJ, Turner SR, Eichhorn SJ (2023) Cellulose: a review of water interactions, applications in composites, and water treatment. Chem Rev 123:2016–2048. https://doi.org/10.1021/acs.chemrev.2c00477. (PMID: 10.1021/acs.chemrev.2c00477) ; Farrugia C, Di Mauro A, Lia F et al (2021) Suitability of different titanium dioxide nanotube morphologies for photocatalytic water treatment. Nanomaterials 11:1–18. https://doi.org/10.3390/nano11030708. (PMID: 10.3390/nano11030708) ; Fiol N, Villaescusa I (2009) Determination of sorbent point zero charge: usefulness in sorption studies. Environ Chem Lett 7:79–84. https://doi.org/10.1007/s10311-008-0139-0. (PMID: 10.1007/s10311-008-0139-0) ; Franco DSP, Georgin J, Lima EC, Silva LFO (2022) Journal of water process engineering advances made in removing paraquat herbicide by adsorption technology: a review. J Water Process Eng 49:102988. https://doi.org/10.1016/j.jwpe.2022.102988. (PMID: 10.1016/j.jwpe.2022.102988) ; Franco DSP, Georgin J, Ramos CG et al (2023b) Production of adsorbent for removal of propranolol hydrochloride: use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. J Mol Liq 380:121677. https://doi.org/10.1016/j.molliq.2023.121677. (PMID: 10.1016/j.molliq.2023.121677) ; Franco DSP, Georgin J, Ramos CG et al (2023a) The synthesis and evaluation of porous carbon material from corozo fruit (Bactris guineensis) for efficient propranolol hydrochloride adsorption. Molecules 28. https://doi.org/10.3390/molecules28135232. ; Frontistis Z, Mantzavinos D (2012) Sonodegradation of 17α-ethynylestradiol in environmentally relevant matrices: laboratory-scale kinetic studies. Ultrason Sonochem 19:77–84. https://doi.org/10.1016/j.ultsonch.2011.06.016. (PMID: 10.1016/j.ultsonch.2011.06.016) ; Fu H, Suri RPS, Chimchirian RF et al (2007) Ultrasound-induced destruction of low levels of estrogen hormones in aqueous solutions. Environ Sci Technol 41:5869–5874. https://doi.org/10.1021/es0703372. (PMID: 10.1021/es0703372) ; Gao X, Wang X, Li J et al (2020) Aquatic life criteria derivation and ecological risk assessment of DEET in China. Ecotoxicol Environ Saf 188. https://doi.org/10.1016/j.ecoenv.2019.109881. ; García J, García-Galán MJ, Day JW et al (2020) A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresour Technol 307:123228. https://doi.org/10.1016/j.biortech.2020.123228. (PMID: 10.1016/j.biortech.2020.123228) ; Georgin J, Franco DSP, Da Boit MK et al (2022a) A review of the toxicology presence and removal of ketoprofen through adsorption technology. J Environ Chem Eng 10:107798. https://doi.org/10.1016/j.jece.2022.107798. (PMID: 10.1016/j.jece.2022.107798) ; Georgin J, Franco DSP, Netto MS et al (2022b) Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids Surfaces A Physicochem Eng Asp 654:129900. https://doi.org/10.1016/j.colsurfa.2022.129900. (PMID: 10.1016/j.colsurfa.2022.129900) ; Georgin J, Franco DSP, Ramos CG et al (2023a) A review of the antibiotic ofloxacin : Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chem Eng Res Des 193:99–120. https://doi.org/10.1016/j.cherd.2023.03.025. (PMID: 10.1016/j.cherd.2023.03.025) ; Georgin J, Franco DSPP, Netto MS et al (2023b) Adsorption of the first-line Covid treatment analgesic onto activated carbon from residual pods of Erythrina speciosa. Environ Manag 71:795–808. https://doi.org/10.1007/s00267-022-01716-6. (PMID: 10.1007/s00267-022-01716-6) ; Georgin J, Stracke D, Franco P et al (2024) Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects. Adv Colloid Interface Sci 324:103096.  https://doi.org/10.1016/j.cis.2024.103096. ; Ghosh N, Das S, Biswas G, Haldar PK (2022) Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment. Water Sci Technol 85:3370–3395. https://doi.org/10.2166/wst.2022.153. (PMID: 10.2166/wst.2022.153) ; Gogoi A, Mazumder P, Tyagi VK et al (2018) Occurrence and fate of emerging contaminants in water environment: a review. Groundw Sustain Dev 6:169–180. https://doi.org/10.1016/j.gsd.2017.12.009. (PMID: 10.1016/j.gsd.2017.12.009) ; Goldstein J, Newbury DE, Joy DC et al (2003) Scanning electron microscopy and X-ray microanalysis. ; Gong K, Lin Y, Wu P et al (2022) Removal mechanism of 17β-estradiol by carbonized green synthesis of Fe/Ni nanoparticles. Chemosphere 291:132777. https://doi.org/10.1016/j.chemosphere.2021.132777. (PMID: 10.1016/j.chemosphere.2021.132777) ; Gosset A, Polomé P, Perrodin Y (2020) Ecotoxicological risk assessment of micropollutants from treated urban wastewater effluents for watercourses at a territorial scale: application and comparison of two approaches. Int J Hyg Environ Health 224:113437. https://doi.org/10.1016/j.ijheh.2019.113437. (PMID: 10.1016/j.ijheh.2019.113437) ; Grassi P, Georgin J, Franco DSP et al (2023) Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems. Int J Phytoremediation 0:1–16. https://doi.org/10.1080/15226514.2023.2225615. (PMID: 10.1080/15226514.2023.2225615) ; Guedes Maniero M, Maia Bila D, Dezotti M (2008) Degradation and estrogenic activity removal of 17β-estradiol and 17α-ethinylestradiol by ozonation and O3/H2O2. Sci Total Environ 407:105–115. https://doi.org/10.1016/j.scitotenv.2008.08.011. (PMID: 10.1016/j.scitotenv.2008.08.011) ; Guo W, Yue J, Zhao Q et al (2022) Comparison of 17β-estradiol adsorption on corn straw-and dewatered sludge-biochar in aqueous solutions. Molecules 27:1–15. https://doi.org/10.3390/molecules27082567. (PMID: 10.3390/molecules27082567) ; Gupta VK, Mittal A, Krishnan L, Mittal J (2006) Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J Colloid Interface Sci 293:16–26. https://doi.org/10.1016/j.jcis.2005.06.021. (PMID: 10.1016/j.jcis.2005.06.021) ; Gupta N, Amritphale SS, Chandra N (2009) Removal of lead from aqueous solution by hybrid precursor prepared by rice hull. J Hazard Mater 163:1194–1198. https://doi.org/10.1016/j.jhazmat.2008.07.113. (PMID: 10.1016/j.jhazmat.2008.07.113) ; Hamid H, Eskicioglu C (2012) Fate of estrogenic hormones in wastewater and sludge treatment: a review of properties and analytical detection techniques in sludge matrix. Water Res 46:5813–5833. https://doi.org/10.1016/j.watres.2012.08.002. (PMID: 10.1016/j.watres.2012.08.002) ; Han B, Butterly C, Zhang W et al (2021) Adsorbent materials for ammonium and ammonia removal: a review. J Clean Prod 283. https://doi.org/10.1016/j.jclepro.2020.124611. ; Hansen KMS, Andersen HR (2012) Energy effectiveness of direct UV and UV/Htreatment of estrogenic chemicals in biologically treated sewage. Int J Photoenergy 2012. https://doi.org/10.1155/2012/270320. ; Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342. https://doi.org/10.1016/j.talanta.2005.09.037. (PMID: 10.1016/j.talanta.2005.09.037) ; Hill TL, Gillis J, Jacobs P (1961) An introduction to statistical thermodynamics. ; Ho YS (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59:171–177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf. (PMID: 10.1023/B:SCIE.0000013305.99473.cf) ; Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5. (PMID: 10.1016/S0032-9592(98)00112-5) ; Hosny NM, Gomaa I, Elmahgary MG (2023) Adsorption of polluted dyes from water by transition metal oxides: a review. Appl Surf Sci Adv 15. https://doi.org/10.1016/j.apsadv.2023.100395. ; Ifelebuegu AO, Onubogu J, Joyce E, Mason T (2014) Sonochemical degradation of endocrine disrupting chemicals 17β-estradiol and 17α-ethinylestradiol in water and wastewater. Int J Environ Sci Technol 11:1–8. https://doi.org/10.1007/s13762-013-0365-2. (PMID: 10.1007/s13762-013-0365-2) ; Ifelebuegu AO, Ukpebor J, Nzeribe-Nwedo B (2016) Mechanistic evaluation and reaction pathway of UV photo-assisted Fenton-like degradation of progesterone in water and wastewater. Int J Environ Sci Technol 13:2757–2766. https://doi.org/10.1007/s13762-016-1103-3. (PMID: 10.1007/s13762-016-1103-3) ; Janeczko A, Filek W, Biesaga-Kościelniak J et al (2003) The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. Plant Cell Tissue Organ Cult 72:147–151. https://doi.org/10.1023/A:1022291718398. (PMID: 10.1023/A:1022291718398) ; Jawad AH (2018) Carbonization of rubber (Hevea brasiliensis) seed shell by one-step liquid phase activation with H2SO4 for methylene blue adsorption. Desalin Water Treat 129:279–288. https://doi.org/10.5004/dwt.2018.23090. (PMID: 10.5004/dwt.2018.23090) ; Jawad AH, Mohd Firdaus Hum NN, Abdulhameed AS, Mohd Ishak MA (2020) Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modelling, optimisation, and mechanism study. Int J Environ Anal Chem 00:1–17. https://doi.org/10.1080/03067319.2020.1807529. (PMID: 10.1080/03067319.2020.1807529) ; Jiang LH, Liu YG, Zeng GM et al (2016) Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: external influence and adsorption mechanism. Chem Eng J 284:93–102. https://doi.org/10.1016/j.cej.2015.08.139. (PMID: 10.1016/j.cej.2015.08.139) ; Jiang L, Liu Y, Liu S et al (2017) Fabrication of β-cyclodextrin/poly (L-glutamic acid) supported magnetic graphene oxide and its adsorption behavior for 17β-estradiol. Chem Eng J 308:597–605. https://doi.org/10.1016/j.cej.2016.09.067. (PMID: 10.1016/j.cej.2016.09.067) ; Jiang L, Liu Y, Zeng G et al (2018) Adsorption of 17Β-estradiol by graphene oxide: effect of heteroaggregation with inorganic nanoparticles. Chem Eng J 343:371–378. https://doi.org/10.1016/j.cej.2018.03.026. (PMID: 10.1016/j.cej.2018.03.026) ; Johnson AC, Jin X, Nakada N, Sumpter JP (2020) the future of chemicals in the environment. Science 367(80-):384–387. (PMID: 10.1126/science.aay6637) ; Kamble S, Kumbhar A, Rashinkar G et al (2012) Ultrasound promoted efficient and green synthesis of β-amino carbonyl compounds in aqueous hydrotropic medium. Ultrason Sonochem 19:812–815. https://doi.org/10.1016/j.ultsonch.2011.12.001. (PMID: 10.1016/j.ultsonch.2011.12.001) ; Kanaujiya DK, Paul T, Sinharoy A, Pakshirajan K (2019) Biological treatment processes for the removal of organic micropollutants from wastewater: a review. Curr Pollut Reports 5:112–128. https://doi.org/10.1007/s40726-019-00110-x. (PMID: 10.1007/s40726-019-00110-x) ; Karar K, Gupta AK (2006) Seasonal variations and chemical characterization of ambient PM10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmos Res 81:36–53. https://doi.org/10.1016/j.atmosres.2005.11.003. (PMID: 10.1016/j.atmosres.2005.11.003) ; Kase R, Javurkova B, Simon E et al (2018) Screening and risk management solutions for steroidal estrogens in surface and wastewater. TrAC - Trends Anal Chem 102:343–358. https://doi.org/10.1016/j.trac.2018.02.013. (PMID: 10.1016/j.trac.2018.02.013) ; Kidd KA, Blanchfield PJ, Mills KH et al (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci U S A 104:8897–8901. https://doi.org/10.1073/pnas.0609568104. (PMID: 10.1073/pnas.0609568104) ; Kim MK, Zoh KD (2016) Occurrence and removals of micropollutants in water environment. Environ Eng Res 21:319–332. https://doi.org/10.4491/eer.2016.115. ; Kimura K, Amy G, Drewes JE et al (2003) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Memb Sci 227:113–121. https://doi.org/10.1016/j.memsci.2003.09.005. (PMID: 10.1016/j.memsci.2003.09.005) ; Kireç O, Alacabey I, Erol K, Alkan H (2021) Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres. J Polym Eng 41:226–234. https://doi.org/10.1515/polyeng-2020-0150. (PMID: 10.1515/polyeng-2020-0150) ; Król M (2020) Natural vs. Synthetic zeolites. Crystals 10:1–8. https://doi.org/10.3390/cryst10070622. (PMID: 10.3390/cryst10070622) ; Kumar R, Ahmad R (2011) Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 265:112–118. https://doi.org/10.1016/j.desal.2010.07.040. (PMID: 10.1016/j.desal.2010.07.040) ; Kuster M, De José López Alda M, Barceló D (2004) Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. TrAC - Trends Anal Chem 23:790–798. https://doi.org/10.1016/j.trac.2004.08.007. (PMID: 10.1016/j.trac.2004.08.007) ; Langmuir I (1918) Adsorption of gases on glass, mica and platinum. J Am Chem Soc 40:1361–1403. (PMID: 10.1021/ja02242a004) ; Laura F, Tamara A, Müller A et al (2020) Selecting sustainable sewage sludge reuse options through a systematic assessment framework: methodology and case study in Latin America. J Clean Prod 242. https://doi.org/10.1016/j.jclepro.2019.118389. ; Lebron YAR, Moreira VR, Drumond GP et al (2020) Statistical physics modeling and optimization of norfloxacin adsorption onto graphene oxide. Colloids Surfaces A Physicochem Eng Asp 606:125534. https://doi.org/10.1016/j.colsurfa.2020.125534. (PMID: 10.1016/j.colsurfa.2020.125534) ; Leng Y, Wang W, Cai H et al (2023) Sorption kinetics, isotherms and molecular dynamics simulation of 17β-estradiol onto microplastics. Sci Total Environ 858:159803. https://doi.org/10.1016/j.scitotenv.2022.159803. (PMID: 10.1016/j.scitotenv.2022.159803) ; Li Y, Zhang A (2014) Removal of steroid estrogens from waste activated sludge using Fenton oxidation: Influencing factors and degradation intermediates. Chemosphere 105:24–30. https://doi.org/10.1016/j.chemosphere.2013.10.043. (PMID: 10.1016/j.chemosphere.2013.10.043) ; Li M, Xu B, Liungai Z et al (2016) The removal of estrogenic activity with UV/chlorine technology and identification of novel estrogenic disinfection by-products. J Hazard Mater 307:119–126. https://doi.org/10.1016/j.jhazmat.2016.01.003. (PMID: 10.1016/j.jhazmat.2016.01.003) ; Li S, Wang F, Pan W et al (2019) Molecular insights into the effects of Cu(II) on sulfamethoxazole and 17Β-estradiol adsorption by carbon nanotubes/CoFe2O4 composites. Chem Eng J 373:995–1002. https://doi.org/10.1016/j.cej.2019.05.111. (PMID: 10.1016/j.cej.2019.05.111) ; Li H, Li S, Cao X, Sun W (2020) Comparing the effects of different types of inorganic nanoparticles on 17β-estradiol adsorption by graphene oxide. Environ Res 187. https://doi.org/10.1016/j.envres.2020.109656. ; Li Puma G, Puddu V, Tsang HK et al (2010) Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: Photon absorption, quantum yields and rate constants independent of photon absorp. Appl Catal B Environ 99:388–397. https://doi.org/10.1016/j.apcatb.2010.05.015. (PMID: 10.1016/j.apcatb.2010.05.015) ; Lima EC, Hosseini-Bandegharaei A, Anastopoulos I (2019a) Response to “Some remarks on a critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the van’t Hoff equation for calculation of thermodynamic parameters of adsorption - Journal of. J Mol Liq 280:298–300. https://doi.org/10.1016/j.molliq.2019.01.160. (PMID: 10.1016/j.molliq.2019.01.160) ; Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019b) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048. (PMID: 10.1016/j.molliq.2018.10.048) ; Lima EC, Sher F, Guleria A et al (2020) Is one performing the treatment data of adsorption kinetics correctly? J Environ Chem Eng 9:104813. https://doi.org/10.1016/j.jece.2020.104813. (PMID: 10.1016/j.jece.2020.104813) ; Lin Y, Peng Z, Zhang X (2009) Ozonation of estrone, estradiol, diethylstilbestrol in waters. Desalination 249:235–240. https://doi.org/10.1016/j.desal.2008.06.034. (PMID: 10.1016/j.desal.2008.06.034) ; Liu S, Xu XR, Qi ZH et al (2017) Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption. Environ Pollut 228:72–81. https://doi.org/10.1016/j.envpol.2017.05.031. (PMID: 10.1016/j.envpol.2017.05.031) ; Liu S, Li M, Liu Y et al (2019a) Removal of 17β-estradiol from aqueous solution by graphene oxide supported activated magnetic biochar: Adsorption behavior and mechanism. J Taiwan Inst Chem Eng 102:330–339. https://doi.org/10.1016/j.jtice.2019.05.002. (PMID: 10.1016/j.jtice.2019.05.002) ; Liu S, Liu Y, Jiang L et al (2019b) Removal of 17β-Estradiol from water by adsorption onto montmorillonite-carbon hybrids derived from pyrolysis carbonization of carboxymethyl cellulose. J Environ Manag 236:25–33. https://doi.org/10.1016/j.jenvman.2019.01.064. (PMID: 10.1016/j.jenvman.2019.01.064) ; Liu N, Liu Y, Zeng G et al (2020) Adsorption of 17β-estradiol from aqueous solution by raw and direct/pre/post-KOH treated lotus seedpod biochar. J Environ Sci (china) 87:10–23. https://doi.org/10.1016/j.jes.2019.05.026. (PMID: 10.1016/j.jes.2019.05.026) ; Lotfi S, Fischer K, Schulze A, Schäfer AI (2022) Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nat Nanotechnol 17:417–423. https://doi.org/10.1038/s41565-022-01074-8. (PMID: 10.1038/s41565-022-01074-8) ; Lu J, Wu J, Wu J et al (2021) Adsorption and desorption of steroid hormones by microplastics in seawater. Bull Environ Contam Toxicol 107:730–735. https://doi.org/10.1007/S00128-020-02784-2/METRICS. (PMID: 10.1007/S00128-020-02784-2/METRICS) ; Luo Y, Jiang Q, Ngo HH et al (2015) Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system. Bioresour Technol 191:355–359. https://doi.org/10.1016/j.biortech.2015.05.073. (PMID: 10.1016/j.biortech.2015.05.073) ; Ma L, Yates SR (2018) Dissolved organic matter and estrogen interactions regulate estrogen removal in the aqueous environment: a review. Sci Total Environ 640–641:529–542. https://doi.org/10.1016/j.scitotenv.2018.05.301. (PMID: 10.1016/j.scitotenv.2018.05.301) ; Ma X, Zhang C, Deng J et al (2015) Simultaneous degradation of estrone, 17β-estradiol and 17α-ethinyl estradiol in an aqueous UV/H2o2 system. Int J Environ Res Public Health 12:12016–12029. https://doi.org/10.3390/ijerph121012016. (PMID: 10.3390/ijerph121012016) ; Machineni L (2019) Review on biological wastewater treatment and resources recovery: Attached and suspended growth systems. Water Sci Technol 80:2013–2026. https://doi.org/10.2166/wst.2020.034. (PMID: 10.2166/wst.2020.034) ; Manzar MS, Ahmad T, Zubair M et al (2023) Comparative adsorption of tetracycline onto unmodified and NaOH-modified silicomanganese fumes: kinetic and process modeling. Chem Eng Res Des 192:521–533. https://doi.org/10.1016/j.cherd.2023.02.047. (PMID: 10.1016/j.cherd.2023.02.047) ; Martin OV, Voulvoulis N (2009) Sustainable risk management of emerging contaminants in municipal wastewaters. Philos Trans R Soc A Math Phys Eng Sci 367:3895–3922. https://doi.org/10.1098/rsta.2009.0115. (PMID: 10.1098/rsta.2009.0115) ; Matozzo V, Gagné F, Marin MG et al (2008) Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review. Environ Int 34:531–545. https://doi.org/10.1016/j.envint.2007.09.008. (PMID: 10.1016/j.envint.2007.09.008) ; Mboula VM, Héquet V, Andrès Y et al (2015) Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity. Appl Catal B Environ 162:437–444. https://doi.org/10.1016/j.apcatb.2014.05.026. (PMID: 10.1016/j.apcatb.2014.05.026) ; Meffe R, de Bustamante I (2014) Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Sci Total Environ 481:280–295. https://doi.org/10.1016/j.scitotenv.2014.02.053. (PMID: 10.1016/j.scitotenv.2014.02.053) ; Melo-Guimarães A, Torner-Morales FJ, Durán-Álvarez JC, Jiménez-Cisneros BE (2013) Removal and fate of emerging contaminants combining biological, flocculation and membrane treatments. Water Sci Technol 67:877–885. https://doi.org/10.2166/wst.2012.640. (PMID: 10.2166/wst.2012.640) ; Mohd Azmi NZ, Buthiyappan A, Abdul Raman AA et al (2022) Recent advances in biomass based activated carbon for carbon dioxide capture—a review. J Ind Eng Chem 116:1–20. https://doi.org/10.1016/j.jiec.2022.08.021. (PMID: 10.1016/j.jiec.2022.08.021) ; Mojiri A (2011) Effects of municipal wastewater on physical and chemical properties of saline soil. J Biol Environ Sci 5:71–76. ; Moore SC, Matthews CE, Ou Shu X et al (2016) Endogenous estrogens, estrogen metabolites, and breast cancer risk in postmenopausal Chinese women. J Natl Cancer Inst 108:1–12. https://doi.org/10.1093/jnci/djw103. (PMID: 10.1093/jnci/djw103) ; Moussout H, Dehmani Y, Franco DSP, Georgin J (2023) Towards an in-depth experimental and theoretical understanding of the cadmium uptake mechanism on a synthesized chitin biopolymer. J Mol Liq 383:122106. https://doi.org/10.1016/j.molliq.2023.122106. (PMID: 10.1016/j.molliq.2023.122106) ; Narayanan I, Kumar PS, Franco DSP et al (2023) Insight into the biosorptive removal mechanisms of hexavalent chromium using the red macroalgae Gelidium sp. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-04390-8. (PMID: 10.1007/s13399-023-04390-8) ; Nasuha N, Hameed BH, Din ATM (2010) Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. J Hazard Mater 175:126–132. https://doi.org/10.1016/j.jhazmat.2009.09.138. (PMID: 10.1016/j.jhazmat.2009.09.138) ; Nelles JL, Hu WY, Prins GS (2011) Estrogen action and prostate cancer. Expert Rev Endocrinol Metab 6:437–451. https://doi.org/10.1586/eem.11.20. (PMID: 10.1586/eem.11.20) ; Nguyen LN, Hai FI, Kang J et al (2013) Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeterior Biodegrad 85:474–482. https://doi.org/10.1016/j.ibiod.2013.03.014. (PMID: 10.1016/j.ibiod.2013.03.014) ; Ning Q, Yin Z, Liu Y et al (2018) Fabrication of stabilized Fe–Mn binary oxide nanoparticles: effective adsorption of 17β-estradiol and influencing factors. Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15102218. ; Ogunlaja OO, Parker WJ (2015) Impact of activated sludge process configuration on removal of micropollutants and estrogenicity. Water Sci Technol 72:277–283. https://doi.org/10.2166/wst.2015.213. (PMID: 10.2166/wst.2015.213) ; Orozco-Hernández L, Gómez-Oliván LM, Elizalde-Velázquez A et al (2019) 17-β-Estradiol: Significant reduction of its toxicity in water treated by photocatalysis. Sci Total Environ 669:955–963. https://doi.org/10.1016/j.scitotenv.2019.03.190. (PMID: 10.1016/j.scitotenv.2019.03.190) ; Pang YL, Abdullah AZ, Bhatia S (2011) Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination 277:1–14. https://doi.org/10.1016/j.desal.2011.04.049. (PMID: 10.1016/j.desal.2011.04.049) ; Peña-Guzmán C, Ulloa-Sánchez S, Mora K et al (2019) Emerging pollutants in the urban water cycle in Latin America: a review of the current literature. J Environ Manag 237:408–423. https://doi.org/10.1016/j.jenvman.2019.02.100. (PMID: 10.1016/j.jenvman.2019.02.100) ; Philippou K, Anastopoulos I, Pashalidis I et al (2021) Chapter 6 -The application of pine-based adsorbents to remove potentially toxic elements from aqueous solutions. Environ Stud Res Elsevier pp 113–133. ; Plotan M, Elliott CT, Frizzell C, Connolly L (2014) Estrogenic endocrine disruptors present in sports supplements. A risk assessment for human health. Food Chem 159:157–165. https://doi.org/10.1016/j.foodchem.2014.02.153. (PMID: 10.1016/j.foodchem.2014.02.153) ; Prasertkulsak S, Chiemchaisri C, Chiemchaisri W et al (2016) Removals of pharmaceutical compounds from hospital wastewater in membrane bioreactor operated under short hydraulic retention time. Chemosphere 150:624–631. https://doi.org/10.1016/j.chemosphere.2016.01.031. (PMID: 10.1016/j.chemosphere.2016.01.031) ; Pratush A, Ye X, Yang Q et al (2020) Biotransformation strategies for steroid estrogen and androgen pollution. Appl Microbiol Biotechnol 104:2385–2409. https://doi.org/10.1007/s00253-020-10374-9. (PMID: 10.1007/s00253-020-10374-9) ; Prokić D, Vukčević M, Kalijadis A et al (2020) Removal of estrone, 17β-estradiol, and 17α-ethinylestradiol from water by adsorption onto chemically modified activated carbon cloths. Fibers Polym 21:2263–2274. https://doi.org/10.1007/s12221-020-9758-2. (PMID: 10.1007/s12221-020-9758-2) ; Prokić D, Vukčević M, Mitrović A et al (2022) Adsorption of estrone, 17β-estradiol, and 17α-ethinylestradiol from water onto modified multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon. Environ Sci Pollut Res 29:4431–4445. https://doi.org/10.1007/s11356-021-15970-4. (PMID: 10.1007/s11356-021-15970-4) ; Qing Y, Li Y, Guo Z et al (2022) Photocatalytic Bi2WO6/pg-C3N4-embedded in polyamide microfiltration membrane with enhanced performance in synergistic adsorption-photocatalysis of 17β-estradiol from water. J Environ Chem Eng 10:108648. https://doi.org/10.1016/j.jece.2022.108648. (PMID: 10.1016/j.jece.2022.108648) ; Qiu H, Lv L, Pan BC et al (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10:716–724. https://doi.org/10.1631/jzus.A0820524. (PMID: 10.1631/jzus.A0820524) ; Ranke W (2008) Adsorption and desorption. ; Rasaki SA, Bingxue Z, Guarecuco R et al (2019) Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: a critical review. J Clean Prod 213:42–58. https://doi.org/10.1016/j.jclepro.2018.12.145. (PMID: 10.1016/j.jclepro.2018.12.145) ; Renuka R, Mohan SM, Sowmiya B, Raj SA (2016) Performance evaluation of panelled anaerobic baffle-cum-filter reactor in treating municipal wastewater. Ecol Eng 97:1–12. https://doi.org/10.1016/j.ecoleng.2016.07.020. (PMID: 10.1016/j.ecoleng.2016.07.020) ; Rigoletto M, Calza P, Gaggero E, Laurenti E (2022) Hybrid materials for the removal of emerging pollutants in water: classification, synthesis, and properties. Chem Eng J Adv 10. https://doi.org/10.1016/j.ceja.2022.100252. ; Riva F, Zuccato E, Davoli E et al (2019) Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J Hazard Mater 361:103–110. https://doi.org/10.1016/j.jhazmat.2018.07.099. (PMID: 10.1016/j.jhazmat.2018.07.099) ; Rizzo L, Malato S, Antakyali D et al (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008. https://doi.org/10.1016/j.scitotenv.2018.11.265. (PMID: 10.1016/j.scitotenv.2018.11.265) ; Rocha MJ, Rocha E (2022) Synthetic progestins in waste and surface waters: concentrations, impacts and ecological risk. Toxics 10:1–25. https://doi.org/10.3390/toxics10040163. (PMID: 10.3390/toxics10040163) ; Rosenfeldt EJ, Linden KG (2004) Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ Sci Technol 38:5476–5483. https://doi.org/10.1021/es035413p. (PMID: 10.1021/es035413p) ; Saaristo M, Tomkins P, Allinson M et al (2013) An androgenic agricultural contaminant impairs female reproductive behaviour in a freshwater fish. PLoS One 8:1–7. https://doi.org/10.1371/journal.pone.0062782. (PMID: 10.1371/journal.pone.0062782) ; Sadiq AC, Rahim NY, Suah FBM (2020) Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. Int J Biol Macromol 164:3965–3973. https://doi.org/10.1016/j.ijbiomac.2020.09.029. (PMID: 10.1016/j.ijbiomac.2020.09.029) ; Saggioro EM, Chaves FP, Felix LC et al (2019) Endocrine disruptor degradation by UV/chlorine and the impact of their removal on estrogenic activity and toxicity. Int J Photoenergy 2019. https://doi.org/10.1155/2019/7408763. ; Salla RF, Gamero FU, Rissoli RZ et al (2016) Impact of an environmental relevant concentration of 17α-ethinylestradiol on the cardiac function of bullfrog tadpoles. Chemosphere 144:1862–1868. https://doi.org/10.1016/j.chemosphere.2015.10.042. (PMID: 10.1016/j.chemosphere.2015.10.042) ; Santos LHMLM, Araújo AN, Fachini A et al (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100. (PMID: 10.1016/j.jhazmat.2009.10.100) ; Sasidharan S, Georgin J, Franco DSP et al (2022) Hexavalent chromium adsorption onto environmentally friendly mesquite gum-based polyurethane foam. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-03528-4. (PMID: 10.1007/s13399-022-03528-4) ; Schröder P, Helmreich B, Škrbić B et al (2016) Status of hormones and painkillers in wastewater effluents across several European states—considerations for the EU watch list concerning estradiols and diclofenac. Environ Sci Pollut Res 23:12835–12866. https://doi.org/10.1007/s11356-016-6503-x. (PMID: 10.1007/s11356-016-6503-x) ; Şenol ZM, Elma E, El Messaoudi N, Mehmeti V (2023a) Performance of cross-linked chitosan-zeolite composite adsorbent for removal of Pb2+ ions from aqueous solutions: experimental and Monte Carlo simulations studies. J Mol Liq 391:123310. https://doi.org/10.1016/J.MOLLIQ.2023.123310. (PMID: 10.1016/J.MOLLIQ.2023.123310) ; Şenol ZM, Messaoudi N El, Fernine Y, Keskin ZS (2023b) Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies. Biomass Convers Biorefinery 1–14. https://doi.org/10.1007/S13399-023-03781-1. ; Shaheen J, Fseha YH, Sizirici B (2022) Performance, life cycle assessment, and economic comparison between date palm waste biochar and activated carbon derived from woody biomass. Heliyon 8:e12388. https://doi.org/10.1016/j.heliyon.2022.e12388. (PMID: 10.1016/j.heliyon.2022.e12388) ; Shi W, Li S, Chen B et al (2017) Effects of Fe2O3 and ZnO nanoparticles on 17Β-estradiol adsorption to carbon nanotubes. Chem Eng J 326:1134–1144. https://doi.org/10.1016/j.cej.2017.05.007. (PMID: 10.1016/j.cej.2017.05.007) ; Shore LS, Shemesh M (2016) Estrogen as an environmental pollutant. Bull Environ Contam Toxicol 97:447–448. https://doi.org/10.1007/s00128-016-1873-9. (PMID: 10.1007/s00128-016-1873-9) ; Si X, Hu Z, Huang S (2018) Combined process of ozone oxidation and ultrafiltration as an effective treatment technology for the removal of endocrine-disrupting chemicals. Appl Sci 8. https://doi.org/10.3390/app8081240. ; Sohoni P, Sumpter JP (1998) Several environmental oestrogens are also anti-androgens. J Endocrinol 158:327–339. https://doi.org/10.1677/joe.0.1580327. (PMID: 10.1677/joe.0.1580327) ; Song KY, Park PK, Kim JH et al (2009) Coupling effect of 17β-estradiol and natural organic matter on the performance of a PAC adsorption/membrane filtration hybrid system. Desalination 237:392–399. https://doi.org/10.1016/j.desal.2008.11.004. (PMID: 10.1016/j.desal.2008.11.004) ; Su C, Cui Y, Liu D et al (2020) Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: which chemicals are the prioritized ones? Sci Total Environ 720:137652. https://doi.org/10.1016/j.scitotenv.2020.137652. (PMID: 10.1016/j.scitotenv.2020.137652) ; Sun W, Zhou K (2014) Adsorption of 17β-estradiol by multi-walled carbon nanotubes in natural waters with or without aquatic colloids. Chem Eng J 258:185–193. https://doi.org/10.1016/j.cej.2014.07.087. (PMID: 10.1016/j.cej.2014.07.087) ; Sun W, Li S, Mai J, Ni J (2010) Initial photocatalytic degradation intermediates/pathways of 17α-ethynylestradiol: effect of pH and methanol. Chemosphere 81:92–99. https://doi.org/10.1016/j.chemosphere.2010.06.051. (PMID: 10.1016/j.chemosphere.2010.06.051) ; Sun W, Zhang C, Xu N, Ni J (2015) Effect of inorganic nanoparticles on 17β-estradiol and 17α-ethynylestradiol adsorption by multi-walled carbon nanotubes. Environ Pollut 205:111–120. https://doi.org/10.1016/j.envpol.2015.05.032. (PMID: 10.1016/j.envpol.2015.05.032) ; Sun M, Xu D, Ji Y et al (2016) Using fenton oxidation to simultaneously remove different estrogens from cow manure. Int J Environ Res Public Health 13. https://doi.org/10.3390/ijerph13090917. ; Suri RPS, Nayak M, Devaiah U, Helmig E (2007) Ultrasound assisted destruction of estrogen hormones in aqueous solution: effect of power density, power intensity and reactor configuration. J Hazard Mater 146:472–478. https://doi.org/10.1016/j.jhazmat.2007.04.072. (PMID: 10.1016/j.jhazmat.2007.04.072) ; Suri RPS, Singh TS, Abburi S (2010) Influence of alkalinity and salinity on the sonochemical degradation of estrogen hormones in aqueous solution. Environ Sci Technol 44:1373–1379. https://doi.org/10.1021/es9024595. (PMID: 10.1021/es9024595) ; Suzuki M, Kawazoe K (1974) Concentration decay in a batch adsorption tank : Freundlich isotherm with pore diffusion kinetics. SEISAN-KENKYU 26:296–299. ; Tahar A, Tiedeken EJ, Rowan NJ (2018) Occurrence and geodatabase mapping of three contaminants of emerging concern in receiving water and at effluent from waste water treatment plants—a first overview of the situation in the Republic of Ireland. Sci Total Environ 616–617:187–197. https://doi.org/10.1016/j.scitotenv.2017.11.021. (PMID: 10.1016/j.scitotenv.2017.11.021) ; Tatarchuk T, Soltys L, Macyk W (2023) Magnetic adsorbents for removal of pharmaceuticals: A review of adsorption properties. J Mol Liq 384. https://doi.org/10.1016/j.molliq.2023.122174. ; Thomas WJ, Crittenden B (1998) Fundamentals of adsorption equilibria. Adsorpt Technol Des 31–65. https://doi.org/10.1016/b978-075061959-2/50004-5. ; Thomas WJJ, Crittenden B, Guy PK (1998) Adsorption technology & design. Adsorpt Technol Des 288. https://doi.org/10.1016/B978-075061959-2/50004-5. ; Tian SR, Liu YG, Liu SB et al (2018) Hydrothermal synthesis of montmorillonite/hydrochar nanocomposites and application for 17β-estradiol and 17α-ethynylestradiol removal. RSC Adv 8:4273–4283. https://doi.org/10.1039/c7ra12038a. (PMID: 10.1039/c7ra12038a) ; Tiedeken EJ, Tahar A, McHugh B, Rowan NJ (2017) Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters—a 20 year systematic review. Sci Total Environ 574:1140–1163. https://doi.org/10.1016/j.scitotenv.2016.09.084. (PMID: 10.1016/j.scitotenv.2016.09.084) ; Ting YF, Praveena SM (2017) Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review. Environ Monit Assess 189. https://doi.org/10.1007/s10661-017-5890-x. ; Tomlinson ES, Maggs JL, Park BK, Back DJ (1997) Dexamethasone metabolism in vitro: species differences. J Steroid Biochem Mol Biol 62:345–352. https://doi.org/10.1016/S0960-0760(97)00038-1. (PMID: 10.1016/S0960-0760(97)00038-1) ; Tong X, Li Y, Zhang F et al (2019) Adsorption of 17Β-estradiol onto humic-mineral complexes and effects of temperature, pH, and bisphenol A on the adsorption process. Environ Pollut 254:112924. https://doi.org/10.1016/j.envpol.2019.07.092. (PMID: 10.1016/j.envpol.2019.07.092) ; Tong X, Jiang L, Li Y et al (2020) Function of agricultural waste montmorillonite-biochars for sorptive removal of 17β-estradiol. Bioresour Technol 296:122368. https://doi.org/10.1016/j.biortech.2019.122368. (PMID: 10.1016/j.biortech.2019.122368) ; Tran NH, Reinhard M, Gin KYH (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res 133:182–207. https://doi.org/10.1016/j.watres.2017.12.029. (PMID: 10.1016/j.watres.2017.12.029) ; Treviño LS, Wang Q, Walker CL (2015) Hypothesis: activation of rapid signaling by environmental estrogens and epigenetic reprogramming in breast cancer. Reprod Toxicol 54:136–140. https://doi.org/10.1016/j.reprotox.2014.12.014. (PMID: 10.1016/j.reprotox.2014.12.014) ; Tsehaye MT, Velizarov S, Van der Bruggen B (2018) Stability of polyethersulfone membranes to oxidative agents: a review. Polym Degrad Stab 157:15–33. https://doi.org/10.1016/j.polymdegradstab.2018.09.004. (PMID: 10.1016/j.polymdegradstab.2018.09.004) ; Vandenberg LN, Colborn T, Hayes TB et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455. https://doi.org/10.1210/er.2011-1050. (PMID: 10.1210/er.2011-1050) ; Velarde L, Nabavi MS, Escalera E et al (2023) Adsorption of heavy metals on natural zeolites: a review. Chemosphere 328:138508. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138508. (PMID: 10.1016/J.CHEMOSPHERE.2023.138508) ; Verbinnen RT, Nunes GS, Vieira EM (2010) Determinação de hormônios estrógenos em água potável usando CLAE-DAD. Quim Nova 33:1837–1842. https://doi.org/10.1590/S0100-40422010000900003. (PMID: 10.1590/S0100-40422010000900003) ; Voigt M, Wirtz A, Hoffmann-Jacobsen K, Jaeger M (2020) Prior art for the development of a fourth purification stage in wastewater treatment plant for the elimination of anthropogenic micropollutants-a short-review. AIMS Environ Sci 7:69–98. https://doi.org/10.3934/environsci.2020005. (PMID: 10.3934/environsci.2020005) ; Wang F, Sun W, Pan W, Xu N (2015) Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites. Chem Eng J 274:17–29. https://doi.org/10.1016/j.cej.2015.03.113. (PMID: 10.1016/j.cej.2015.03.113) ; Wang M, Qu F, Jia R et al (2016) Preliminary study on the removal of steroidal estrogens using TiO2-doped PVDF ultrafiltration membranes. Water (switzerland) 8:1–12. https://doi.org/10.3390/w8040134. (PMID: 10.3390/w8040134) ; Wang X, Liu N, Liu Y et al (2017) Adsorption removal of 17β-estradiol from water by rice straw-derived biochar with special attention to pyrolysis temperature and background chemistry. Int J Environ Res Public Health 14:1–17. https://doi.org/10.3390/ijerph14101213. (PMID: 10.3390/ijerph14101213) ; Wang L, Shi C, Wang L et al (2020) Rational design{,} synthesis{,} adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale 12:4790–4815. https://doi.org/10.1039/C9NR09274A. (PMID: 10.1039/C9NR09274A) ; Wilson EJ, Geankoplis CJ (1966) Liquid mass transfer at very low reynolds numbers in packed beds. Ind Eng Chem Fundam 5:9–14. https://doi.org/10.1021/i160017a002. (PMID: 10.1021/i160017a002) ; Wu Y, Su M, Chen J et al (2019) Superior adsorption of methyl orange by h-MoS2 microspheres: isotherm, kinetics, and thermodynamic studies. Dye Pigment 170:1–8. https://doi.org/10.1016/j.dyepig.2019.107591. (PMID: 10.1016/j.dyepig.2019.107591) ; Wu CC, Shields JN, Akemann C et al (2021) The phenotypic and transcriptomic effects of developmental exposure to nanomolar levels of estrone and bisphenol A in zebrafish. Sci Total Environ 757:143736. https://doi.org/10.1016/j.scitotenv.2020.143736. (PMID: 10.1016/j.scitotenv.2020.143736) ; Xie C, Xu W, Wang J et al (2019) Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China. Atmos Chem Phys 19:165–179. https://doi.org/10.5194/acp-19-165-2019. (PMID: 10.5194/acp-19-165-2019) ; Xu J, Li M, Zhao D et al (2022) Research and application progress of geopolymers in adsorption: a review. Nanomaterials 12:1–23. https://doi.org/10.3390/nano12173002. (PMID: 10.3390/nano12173002) ; Yazdan MMS, Kumar R, Leung SW (2022) The environmental and health impacts of steroids and hormones in wastewater effluent, as well as existing removal technologies: a review. Ecologies 3:206–224. https://doi.org/10.3390/ecologies3020016. (PMID: 10.3390/ecologies3020016) ; Yin Z, Liu Y, Liu S et al (2018) Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper. Sci Total Environ 639:1530–1542. https://doi.org/10.1016/j.scitotenv.2018.05.130. (PMID: 10.1016/j.scitotenv.2018.05.130) ; Yin Z, Liu Y, Tan X et al (2019) Adsorption of 17Β-estradiol by a novel attapulgite/biochar nanocomposite: characteristics and influencing factors. Process Saf Environ Prot 121:155–164. https://doi.org/10.1016/j.psep.2018.10.022. (PMID: 10.1016/j.psep.2018.10.022) ; Zamri MFMA, Bahru R, Suja F et al (2021) Treatment strategies for enhancing the removal of endocrine-disrupting chemicals in water and wastewater systems. J Water Process Eng 41:102017. https://doi.org/10.1016/j.jwpe.2021.102017. (PMID: 10.1016/j.jwpe.2021.102017) ; Zhang FS, Xie YF, Li XW et al (2015) Accumulation of steroid hormones in soil and its adjacent aquatic environment from a typical intensive vegetable cultivation of North China. Sci Total Environ 538:423–430. https://doi.org/10.1016/j.scitotenv.2015.08.067. (PMID: 10.1016/j.scitotenv.2015.08.067) ; Zhang C, Li Y, Wang C et al (2016) Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: A review. Crit Rev Environ Sci Technol 46:1–59. https://doi.org/10.1080/10643389.2015.1061881. (PMID: 10.1080/10643389.2015.1061881) ; Zhang L, Sellaoui L, Franco D et al (2020a) Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: analytical interpretation via multilayer statistical physics model. Chem Eng J 382:122952. https://doi.org/10.1016/j.cej.2019.122952. (PMID: 10.1016/j.cej.2019.122952) ; Zhang W, Duo H, Li S et al (2020b) An overview of the recent advances in functionalization biomass adsorbents for toxic metals removal. Colloids Interface Sci Commun 38. https://doi.org/10.1016/j.colcom.2020.100308. ; Zhong S, Zhang S, Zhang Y, Li C (2019) Performance and mechanism of estrone (E1) and 17β-estradiol (17β-E2) removal from aqueous solution using hexadecyltrimethylammonium (HDTMA) modified zeolites. J Mater Sci Mater Electron 30:20410–20419. https://doi.org/10.1007/s10854-019-02375-w. (PMID: 10.1007/s10854-019-02375-w) ; Zhou Y, Liu S, Liu Y et al (2020) Efficient removal 17-estradiol by graphene-like magnetic sawdust biochar: preparation condition and adsorption mechanism. Int J Environ Res Public Health 17:1–15. https://doi.org/10.3390/ijerph17228377. (PMID: 10.3390/ijerph17228377) ; Zuhara S, Mackey HR, Al-Ansari T, McKay G (2022) A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-03011-0. (PMID: 10.1007/s13399-022-03011-0)
  • Contributed Indexing: Keywords: 17β-estradiol hormone; Adsorption; Contamination environment
  • Substance Nomenclature: 4TI98Z838E (Estradiol) ; 059QF0KO0R (Water) ; 0 (Water Pollutants, Chemical)
  • Entry Date(s): Date Created: 20240315 Date Completed: 20240419 Latest Revision: 20240419
  • Update Code: 20240419

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -