Zum Hauptinhalt springen

The microbial carbon pump and climate change.

Jiao, N ; Luo, T ; et al.
In: Nature reviews. Microbiology, Jg. 22 (2024-07-01), Heft 7, S. 408-419
academicJournal

Titel:
The microbial carbon pump and climate change.
Autor/in / Beteiligte Person: Jiao, N ; Luo, T ; Chen, Q ; Zhao, Z ; Xiao, X ; Liu, J ; Jian, Z ; Xie, S ; Thomas, H ; Herndl, GJ ; Benner, R ; Gonsior, M ; Chen, F ; Cai, WJ ; Robinson, C
Zeitschrift: Nature reviews. Microbiology, Jg. 22 (2024-07-01), Heft 7, S. 408-419
Veröffentlichung: London, UK : Nature Pub. Group, c2003-, 2024
Medientyp: academicJournal
ISSN: 1740-1534 (electronic)
DOI: 10.1038/s41579-024-01018-0
Schlagwort:
  • Bacteria metabolism
  • Carbon Dioxide metabolism
  • Oceans and Seas
  • Climate Change
  • Carbon metabolism
  • Carbon Cycle
  • Seawater microbiology
  • Seawater chemistry
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Nat Rev Microbiol] 2024 Jul; Vol. 22 (7), pp. 408-419. <i>Date of Electronic Publication: </i>2024 Mar 15.
  • MeSH Terms: Climate Change* ; Carbon* / metabolism ; Carbon Cycle* ; Seawater* / microbiology ; Seawater* / chemistry ; Bacteria / metabolism ; Carbon Dioxide / metabolism ; Oceans and Seas
  • References: Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018). (PMID: 10.3389/fmars.2018.00337) ; Gattuso, J.-P. & Jiao, N. Ocean-based climate actions recommended by academicians from Europe and China. Sci. China Earth Sci. 65, 1612–1614 (2022). (PMID: 10.1007/s11430-022-9970-0) ; Jiao, N. Z. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010). To our knowledge, this study is the first to propose the theory of a MCP. (PMID: 2060196410.1038/nrmicro2386) ; Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979). (PMID: 10.1038/282677a0) ; Ducklow, H. W., Steinberg, D. K. & Buesseler, K. O. Upper ocean carbon export and the biological pump. Oceanography 14, 50–58 (2001). (PMID: 10.5670/oceanog.2001.06) ; Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present (eds Sundquist, E.T. & Broecker, W.S.) 99–110 (AGU, 1985). ; Gattuso, J. P., Frankignoulle, M. & Smith, S. V. Measurement of community metabolism and significance in the coral reef CO 2 source-sink debate. Proc. Natl Acad. Sci. USA 96, 13017–13022 (1999). (PMID: 105572652389210.1073/pnas.96.23.13017) ; Gonsior, M., Powers, L., Lahm, M. & McCallister, S. L. New perspectives on the marine carbon cycle — the marine dissolved organic matter reactivity continuum. Environ. Sci. Technol. 56, 5371–5380 (2022). (PMID: 35442650906968510.1021/acs.est.1c08871) ; Buesseler, K. O. et al. VERTIGO (VERtical Transport in the Global Ocean): a study of particle sources and flux attenuation in the North Pacific. Deep Sea Res. II 55, 1522–1539 (2008). (PMID: 10.1016/j.dsr2.2008.04.024) ; Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998). (PMID: 966074110.1126/science.281.5374.200) ; Chisholm, S. W. Stirring times in the Southern Ocean. Nature 407, 685–687 (2000). (PMID: 1104870210.1038/35037696) ; Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248–254 (2022). This study emphasizes the uncertainty in predicting the role of the BCP in global carbon cycling. (PMID: 10.1038/s41561-022-00927-0) ; Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000). (PMID: 1105765710.1038/35038000) ; Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022). (PMID: 10.5194/essd-14-4811-2022) ; Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75 (2011). (PMID: 2111317910.1038/nrmicro2386-c1) ; Osterholz, H. et al. Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat. Commun. 6, 7422 (2015). (PMID: 2608488310.1038/ncomms8422) ; Wang, P. et al. Long-term cycles in the carbon reservoir of the Quaternary ocean: a perspective from the South China Sea. Natl. Sci. Rev. 1, 119–143 (2014). (PMID: 10.1093/nsr/nwt028) ; Hansell, D. A., Carlson, C. A. & Schlitzer, R. Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Glob. Biogeochem. Cycles 26, GB1016 (2012). (PMID: 10.1029/2011GB004069) ; Jiao, N. et al. A roadmap for ocean negative carbon emission eco-engineering in sea-farming fields. Innov. Geosci. 1, 100029 (2023). This study describes a road map for the ONCE eco-engineering approach. (PMID: 10.59717/j.xinn-geo.2023.100029) ; Karl, D. M. Microbiological oceanography — hidden in a sea of microbes. Nature 415, 590–591 (2002). (PMID: 1183292310.1038/415590b) ; Ogawa, H. & Tanoue, E. Dissolved organic matter in oceanic waters. J. Oceanogr. 59, 129–147 (2003). (PMID: 10.1023/A:1025528919771) ; Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983). (PMID: 10.3354/meps010257) ; Dittmar, T. et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat. Rev. Earth Env. 2, 570–583 (2021). This article overviews the theories on the long-term persistence of marine dissolved organic matter. (PMID: 10.1038/s43017-021-00183-7) ; Jiao, N. et al. Unveiling the enigma of refractory carbon in the ocean. Natl Sci. Rev. 5, 459–463 (2018). (PMID: 10.1093/nsr/nwy020) ; He, C. et al. Metagenomic evidence for the microbial transformation of carboxyl-rich alicyclic molecules: a long-term macrocosm experiment. Water Res. 216, 118281 (2022). This study highlights the potential relationship between RDOC and microbial metabolism. (PMID: 3531668010.1016/j.watres.2022.118281) ; Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006). (PMID: 1715166510.1038/nature05345) ; Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003). (PMID: 1282446116619310.1073/pnas.0832439100) ; Schwalbach, M. S. et al. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ. Microbiol. 12, 490–500 (2010). (PMID: 1988900010.1111/j.1462-2920.2009.02092.x) ; Wells, L. E. & Deming, J. W. Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter. Aquat. Microb. Ecol. 43, 209–221 (2006). (PMID: 10.3354/ame043209) ; Jiao, N. et al. Mechanisms of microbial carbon sequestration in the ocean future research directions. Biogeosciences 11, 5285–5306 (2014). (PMID: 10.5194/bg-11-5285-2014) ; Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348, 331–333 (2015). This study supports the dilution hypothesis to explain DOC consumption by microorganisms in the deep ocean. (PMID: 2588335510.1126/science.1258955) ; Shen, Y. & Benner, R. Molecular properties are a primary control on the microbial utilization of dissolved organic matter in the ocean. Limnol. Oceanogr. 65, 1061–1071 (2020). (PMID: 10.1002/lno.11369) ; Jiao, N. et al. Comment on “Dilution limits dissolved organic carbon utilization in the deep ocean”. Science 350, 148 (2015). (PMID: 10.1126/science.aab2713) ; Lennartz, S. T. & Dittmar, T. Controls on turnover of marine dissolved organic matter — testing the null hypothesis of purely concentration-driven uptake: comment on Shen and Benner, “Molecular properties are a primary control on the microbial utilization of dissolved organic matter in the ocean”. Limnol. Oceanogr. 67, 673–679 (2022). (PMID: 10.1002/lno.12028) ; Wang, N. et al. Contribution of structural recalcitrance to the formation of the deep oceanic dissolved organic carbon reservoir. Environ. Microbiol. Rep. 10, 711–717 (2018). (PMID: 3027731910.1111/1758-2229.12697) ; Jiao, N. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump (in Chinese). Sci. Sin. Terrae 42, 1473–1486 (2012). ; Jiao, N. et al. Why productive upwelling areas are often sources rather than sinks of CO 2 ? — A comparative study on eddy upwellings in the South China Sea. Biogeosci. Discuss. 10, 13399–13426 (2013). ; Jiao, N., Wang, H., Xu, G. & Aricò, S. Blue carbon on the rise: challenges and opportunities. Natl Sci. Rev. 5, 464–468 (2018). (PMID: 10.1093/nsr/nwy030) ; Hopkinson, C. S. & Vallino, J. J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433, 142–145 (2005). (PMID: 1565073510.1038/nature03191) ; Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1050 (2017). (PMID: 2917023410.1126/science.aan8260) ; Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5, 421–445 (2013). This study presents a detailed description of recalcitrant DOC fractions. (PMID: 10.1146/annurev-marine-120710-100757) ; Bauer, J. E., Williams, P. M. & Druffel, E. R. M. C-14 activity of dissolved organic-carbon fractions in the North-Central Pacific and Sargasso Sea. Nature 357, 667–670 (1992). (PMID: 10.1038/357667a0) ; Druffel, E. R. M. et al. Dissolved organic radiocarbon in the central Pacific ocean. Geophys. Res. Lett. 46, 5396–5403 (2019). (PMID: 10.1029/2019GL083149) ; Follett, C. L. et al. Hidden cycle of dissolved organic carbon in the deep ocean. Proc. Natl Acad. Sci. USA 111, 16706–16711 (2014). (PMID: 25385632425013110.1073/pnas.1407445111) ; McCarthy, M. D. et al. Chemosynthetic origin of C-14-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat. Geosci. 4, 32–36 (2011). (PMID: 10.1038/ngeo1015) ; White, M. E. et al. Refractory dissolved organic matter has similar chemical characteristics but different radiocarbon signatures with depth in the marine water column. Glob. Biogeochem. Cycles 37, e2022GB007603 (2023). (PMID: 10.1029/2022GB007603) ; Baltar, F. et al. What is refractory organic matter in the ocean? Front. Mar. Sci. 8, 642637 (2021). (PMID: 10.3389/fmars.2021.642637) ; Zhao, Z. et al. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nat. Commun. 8, 15284 (2017). (PMID: 28513605544232310.1038/ncomms15284) ; Shimotori, K., Omori, Y. & Hama, T. Bacterial production of marine humic-like fluorescent dissolved organic matter and its biogeochemical importance. Aquat. Microb. Ecol. 58, 55–66 (2009). (PMID: 10.3354/ame01350) ; Paerl, R. W. et al. Dityrosine formation via reactive oxygen consumption yields increasingly recalcitrant humic-like fluorescent organic matter in the ocean. Limnol. Oceanogr. Lett. 5, 331–378 (2020). (PMID: 10.1002/lol2.10154) ; Zheng, Q. et al. Molecular characteristics of microbially mediated transformations of Synechococcus-derived dissolved organic matter as revealed by incubation experiments. Environ. Microbiol. 21, 2533–2543 (2019). (PMID: 3104447210.1111/1462-2920.14646) ; Hansen, A. M. et al. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limnol. Oceanogr. 61, 1015–1032 (2016). (PMID: 10.1002/lno.10270) ; Xiao, X., Yamashita, Y., Gonsior, M. & Jiao, N. The efficiency of the microbial carbon pump as seen from the relationship between apparent oxygen utilization and fluorescent dissolved organic matter. Prog. Oceanogr. 210, 102929 (2023). (PMID: 10.1016/j.pocean.2022.102929) ; Cai, R. et al. Microbial processing of sediment-derived dissolved organic matter: implications for its subsequent biogeochemical cycling in overlying seawater. J. Geophys. Res. Biogeosci. 124, 3479–3490 (2019). (PMID: 10.1029/2019JG005212) ; Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70, 2990–3010 (2006). (PMID: 10.1016/j.gca.2006.03.021) ; Hertkorn, N. et al. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10, 1583–1624 (2013). (PMID: 10.5194/bg-10-1583-2013) ; Seidel, M., Vemulapalli, S. P. B., Mathieu, D. & Dittmar, T. Marine dissolved organic matter shares thousands of molecular formulae yet differs structurally across major water masses. Environ. Sci. Technol. 56, 3758–3769 (2022). (PMID: 3521312710.1021/acs.est.1c04566) ; Lian, J. et al. Microbial transformation of distinct exogenous substrates into analogous composition of recalcitrant dissolved organic matter. Environ. Microbiol. 23, 2333–2705 (2021). (PMID: 10.1111/1462-2920.15426) ; Liu, Y. et al. Epiphytic bacteria are essential for the production and transformation of algae-derived carboxyl-rich alicyclic molecule (CRAM)-like DOM. Microbiol. Spectr. 9, e0153121 (2021). (PMID: 3466874710.1128/Spectrum.01531-21) ; Che, J. et al. Linking microbial community structure with molecular composition of dissolved organic matter during an industrial-scale composting. J. Hazard. Mater. 405, 124281 (2021). (PMID: 3309734210.1016/j.jhazmat.2020.124281) ; Zhang, Y. et al. Decreasing molecular diversity of soil dissolved organic matter related to microbial community along an alpine elevation gradient. Sci. Total. Environ. 818, 151823 (2022). (PMID: 3480816310.1016/j.scitotenv.2021.151823) ; Lechtenfeld, O. J. et al. Marine sequestration of carbon in bacterial metabolites. Nat. Commun. 6, 6711 (2015). (PMID: 2582672010.1038/ncomms7711) ; Liu, S. T. et al. Different carboxyl-rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea. Limnol. Oceanogr. 65, 1532–1553 (2020). (PMID: 10.1002/lno.11405) ; Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Meth. 6, 230–235 (2008). (PMID: 10.4319/lom.2008.6.230) ; Yamashita, Y. et al. Fate of dissolved black carbon in the deep Pacific Ocean. Nat. Commun. 13, 307 (2022). (PMID: 35027558875876910.1038/s41467-022-27954-0) ; Bostick, K. W. et al. Biolability of fresh and photodegraded pyrogenic dissolved organic matter from laboratory-prepared chars. J. Geophys. Res. Biogeosci. 126, e2020JG005981 (2021). (PMID: 10.1029/2020JG005981) ; Coppola, A. I. et al. The black carbon cycle and its role in the Earth system. Nat. Rev. Earth Env. 3, 516–532 (2022). (PMID: 10.1038/s43017-022-00316-6) ; Santin, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91 (2016). (PMID: 10.1111/gcb.12985) ; Wagner, S., Jaffe, R. & Stubbins, A. Dissolved black carbon in aquatic ecosystems. Limnol. Oceanogr. Lett. 3, 168–185 (2018). (PMID: 10.1002/lol2.10076) ; Wagner, S. et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source. Nat. Commun. 10, 5064 (2019). (PMID: 31699996683809210.1038/s41467-019-13111-7) ; Luther, G. W. Hydrothermal vents are a source of old refractory organic carbon to the deep ocean. Geophys. Res. Lett. 48, e2021GL09486 (2021). (PMID: 10.1029/2021GL094869) ; Yamashita, Y., Mori, Y. & Ogawa, H. Hydrothermal-derived black carbon as a source of recalcitrant dissolved organic carbon in the ocean. Sci. Adv. 9, eade3807 (2023). (PMID: 36763665991697910.1126/sciadv.ade3807) ; Coppola, A. I. & Druffel, E. R. M. Cycling of black carbon in the ocean. Geophys. Res. Lett. 43, 4477–4482 (2016). (PMID: 10.1002/2016GL068574) ; Wang, Y. et al. Linking microbial population succession and DOM molecular changes in Synechococcus-derived organic matter addition incubation. Microbiol. Spectr. 10, e0230821 (2022). (PMID: 3538047210.1128/spectrum.02308-21) ; LaBrie, R. et al. Deep ocean microbial communities produce more stable dissolved organic matter through the succession of rare prokaryotes. Sci. Adv. 8, eabn0035 (2022). (PMID: 3585745210.1126/sciadv.abn0035) ; Arnosti, C. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3, 401–425 (2011). (PMID: 10.1146/annurev-marine-120709-142731) ; Carlson, C. A. et al. Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea. Limnol. Oceanogr. 49, 1073–1083 (2004). (PMID: 10.4319/lo.2004.49.4.1073) ; Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008). (PMID: 1882339310.1111/j.1461-0248.2008.01245.x) ; Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020). (PMID: 3245147110.1038/s41564-020-0720-2) ; Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012). (PMID: 2255625810.1126/science.1218344) ; Ogawa, H. et al. Production of refractory dissolved organic matter by bacteria. Science 292, 917–920 (2001). (PMID: 1134020210.1126/science.1057627) ; Zheng, Q. et al. Highly enriched N-containing organic molecules of Synechococcus lysates and their rapid transformation by heterotrophic bacteria. Limnol. Oceanogr. 66, 335–348 (2021). (PMID: 10.1002/lno.11608) ; Ma, J. et al. Carotenoid biomarkers in Namibian shelf sediments: anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System. Proc. Natl Acad. Sci. USA 118, e2106040118 (2021). (PMID: 34272281830769210.1073/pnas.2106040118) ; Arakawa, N. et al. Carotenoids are the likely precursor of a significant fraction of marine dissolved organic matter. Sci. Adv. 3, e1602976 (2017). (PMID: 28959723561737710.1126/sciadv.1602976) ; Osterholz, H. et al. Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. ISME J. 10, 1717–1730 (2016). (PMID: 26800236491843810.1038/ismej.2015.231) ; Hu, A. et al. Ecological networks of dissolved organic matter and microorganisms under global change. Nat. Commun. 13, 3600 (2022). (PMID: 35739132922607710.1038/s41467-022-31251-1) ; Zhao, Z. et al. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J. 13, 2551–2565 (2019). (PMID: 31227815677602610.1038/s41396-019-0449-1) ; Zhang, C. et al. Evolving paradigms in biological carbon cycling in the ocean. Natl. Sci. Rev. 5, 481–499 (2018). (PMID: 10.1093/nsr/nwy074) ; Chen, Q. et al. Correspondence between DOM molecules and microbial community in a subtropical coastal estuary on a spatiotemporal scale. Environ. Int. 154, 106558 (2021). (PMID: 3387861410.1016/j.envint.2021.106558) ; Chen, X. X. et al. Niche differentiation of microbial community shapes vertical distribution of recalcitrant dissolved organic matter in deep-sea sediments. Environ. Int. 178, 108080 (2023). (PMID: 3742905810.1016/j.envint.2023.108080) ; Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473–19481 (2011). (PMID: 22106254324177810.1073/pnas.1017982108) ; Jiao, N., Tang, K., Cai, H. & Mao, Y. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat. Rev. Microbiol. 9, 75 (2011). (PMID: 10.1038/nrmicro2386-c2) ; Dai, M. et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes and future trends. Annu. Rev. Earth Planet. Sci. 50, 593–626 (2022). (PMID: 10.1146/annurev-earth-032320-090746) ; Dang, H. & Jiao, N. Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems. Biogeosciences 11, 3887–3898 (2014). (PMID: 10.5194/bg-11-3887-2014) ; Liu, J., Jiao, N. & Tang, K. An experimental study on the effects of nutrient enrichment on organic carbon persistence in the western Pacific oligotrophic gyre. Biogeosciences 11, 5115–5122 (2014). (PMID: 10.5194/bg-11-5115-2014) ; Zhang, K. et al. Influence of eco-substrate addition on organic carbon, nitrogen and phosphorus budgets of intensive aquaculture ponds of the Pearl River, China. Aquaculture 520, 734868 (2020). (PMID: 10.1016/j.aquaculture.2019.734868) ; Yuan, X. et al. Bacterial influence on chromophoric dissolved organic matter in two coastal waters of the northern South China Sea. Aquat. Microb. Ecol. 76, 207–217 (2015). (PMID: 10.3354/ame01778) ; Chen, X. et al. Oxygen availability driven trends in DOM molecular composition and reactivity in a seasonally stratified fjord. Water Res. 220, 118690 (2022). (PMID: 3566150410.1016/j.watres.2022.118690) ; Li, P. et al. Stratification of dissolved organic matter in the upper 2000 m water column at the Mariana Trench. Sci. Total Environ. 668, 1222–1231 (2019). (PMID: 3101846210.1016/j.scitotenv.2019.03.094) ; Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean a controversy stimulates new insights. Oceanography 22, 202–211 (2009). (PMID: 10.5670/oceanog.2009.109) ; Middelburg, J. J. Unified prediction of organic matter preservation and degradation. Commun. Earth Environ. 4, 17 (2023). (PMID: 10.1038/s43247-023-00682-z) ; Jessen, G. L. et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci. Adv. 3, e1601897 (2017). (PMID: 28246637530287510.1126/sciadv.1601897) ; Xiao, S. et al. Molecular characterization of organic matter transformation mediated by microorganisms under anoxic/hypoxic conditions. Sci. China Earth Sci 66, 894–909 (2023). (PMID: 10.1007/s11430-022-1080-8) ; Chen, Q. R., Tang, K., Chen, X. F. & Jiao, N. Z. Microbial sulfurization stimulates carbon sequestration in marine oxygen minimum zones. Sci. Bull. 67, 895–898 (2022). (PMID: 10.1016/j.scib.2022.01.028) ; Gomez-Saez, G. V. et al. Sulfurization of dissolved organic matter in the anoxic water column of the Black Sea. Sci. Adv. 7, eabf6199 (2021). (PMID: 34134989820871510.1126/sciadv.abf6199) ; Wohlers, J. et al. Changes in biogenic carbon flow in response to sea surface warming. Proc. Natl Acad. Sci. USA 106, 7067–7072 (2009). (PMID: 19359482267844410.1073/pnas.0812743106) ; Zhang, Y. et al. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proc. Natl Acad. Sci. USA 117, 4823 (2020). (PMID: 32071230706073610.1073/pnas.1912367117) ; Amano, C. et al. Limited carbon cycling due to high-pressure effects on the deep-sea microbiome. Nat. Geosci. 15, 1041–1047 (2022). (PMID: 36504693972664210.1038/s41561-022-01081-3) ; Romera-Castillo, C. et al. Net additions of recalcitrant dissolved organic carbon in the deep Atlantic ocean. Glob. Biogeochem. Cycles 33, 1162–1173 (2019). (PMID: 10.1029/2018GB006162) ; Hawkes, J. A. et al. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nat. Geosci. 8, 856–860 (2015). (PMID: 10.1038/ngeo2543) ; Hawkes, J. A. et al. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions. Geochim. Cosmochim. Acta 175, 68–85 (2016). (PMID: 10.1016/j.gca.2015.11.025) ; Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nat. Geosci. 2, 175–179 (2009). (PMID: 10.1038/ngeo440) ; McCollom, T. M., Simoneit, B. R. T. & Shock, E. L. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum. Energy Fuel 13, 401–410 (1999). (PMID: 10.1021/ef980089i) ; Vandenbroucke, M. & Largeau, C. Kerogen origin, evolution and structure. Org. Geochem. 38, 719–833 (2007). (PMID: 10.1016/j.orggeochem.2007.01.001) ; NASEM. A Research Strategy for Ocean-Based Carbon Dioxide Removal and Sequestration (National Academies, 2021). ; Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021). (PMID: 348775618633420) ; Yao, W., Paytan, A. & Wortmann, U. G. Large-scale ocean deoxygenation during the paleocene-eocene thermal maximum. Science 361, 804–806 (2018). (PMID: 3002631510.1126/science.aar8658) ; Legendre, L. et al. The microbial carbon pump concept: potential biogeochemical significance in the globally changing ocean. Prog. Oceanogr. 134, 432–450 (2015). This study provides a comprehensive analysis of the theoretical framework of the MCP. (PMID: 10.1016/j.pocean.2015.01.008) ; Swanson-Hysell, N. L. et al. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328, 608–611 (2010). (PMID: 2043101110.1126/science.1184508) ; Grotzinger, J. P., Fike, D. A. & Fischer, W. W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat. Geosci. 4, 285–292 (2011). (PMID: 10.1038/ngeo1138) ; Li, C. et al. Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology 15, 211–224 (2017). (PMID: 2799775410.1111/gbi.12222) ; Shi, W. et al. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram excursion. Geology 46, 267–270 (2018). (PMID: 10.1130/G39663.1) ; Ridgwell, A. Evolution of the ocean’s “biological pump”. Proc. Natl Acad. Sci. USA 108, 16485–16486 (2011). (PMID: 21949394318906810.1073/pnas.1112236108) ; Peltier, W. R., Liu, Y. G. & Crowley, J. W. Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–818 (2007). (PMID: 1806400110.1038/nature06354) ; Shen, Y. & Benner, R. Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon. Sci. Rep. 8, 2542 (2018). (PMID: 29416076580319810.1038/s41598-018-20857-5) ; Chang, B. et al. A ∼60-Ma-long, high-resolution record of Ediacaran paleotemperature. Sci. Bull. 67, 910–913 (2022). (PMID: 10.1016/j.scib.2022.01.025) ; Yang, Y. P. et al. Is the upward release of intermediate ocean heat content a possible engine for low-latitude processes? Geology 48, 579–583 (2020). (PMID: 10.1130/G47271.1) ; Marchitto, T. et al. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO 2 rise. Science 316, 1456–1459 (2007). (PMID: 1749513910.1126/science.1138679) ; Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015). (PMID: 2567341610.1038/nature14155) ; Clemens, S. C. & Tiedemann, R. Eccentricity forcing of Pliocene–early Pleistocene climate revealed in a marine oxygen-isotope record. Nature 385, 801–804 (1997). (PMID: 10.1038/385801a0) ; Ma, W., Tian, J., Li, Q. & Wang, P. Simulation of long eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: weathering and nutrient response to orbital change. Geophys. Res. Lett. 38, L10701 (2011). (PMID: 10.1029/2011GL047680) ; Zachos, J. et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001). (PMID: 1132609110.1126/science.1059412) ; Halverson, G. P., Wade, B. P., Hurtgen, M. T. & Barovich, K. M. Neoproterozoic chemostratigraphy. Precambrian Res. 182, 337–350 (2010). (PMID: 10.1016/j.precamres.2010.04.007) ; McClymont, E. L. et al. Pliocene-Pleistocene evolution of sea surface and intermediate water temperatures from the southwest Pacific. Paleoceanography 31, 895–913 (2016). (PMID: 27478302495012610.1002/2016PA002954) ; Shang, H. T. A generic hierarchical model of organic matter degradation and preservation in aquatic systems. Commun. Earth Environ. 4, 16 (2023). (PMID: 10.1038/s43247-022-00667-4) ; Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. Proc. Natl Acad. Sci. USA 118, e2016896118 (2021). (PMID: 33536337801768210.1073/pnas.2016896118) ; Ju, A. B., Wang, H., Wang, L. Q. & Weng, Y. Application of machine learning algorithms for prediction of ultraviolet absorption spectra of chromophoric dissolved organic matter (CDOM) in seawater. Front. Mar. Sci. 10, 1065123 (2023). (PMID: 10.3389/fmars.2023.1065123) ; Mentges, A. et al. Long-term stability of marine dissolved organic carbon emerges from a neutral network of compounds and microbes. Sci. Rep. 9, 17780 (2019). (PMID: 31780725688303710.1038/s41598-019-54290-z) ; Jiao, N. et al. Microbes mediated comprehensive carbon sequestration for negative emissions in the ocean. Natl. Sci. Rev. 7, 1858–1860 (2020). This study proposes that the MCP and other microbial processes are capable of regulating ONCE. (PMID: 34691528828863410.1093/nsr/nwaa171) ; Higgins, J. A., Fischer, W. W. & Schrag, D. P. Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth Planet. Sci. Lett. 284, 25–33 (2009). (PMID: 10.1016/j.epsl.2009.03.039) ; Castro-Alonso, M. J. et al. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front. Mater. 6, 126 (2019). (PMID: 10.3389/fmats.2019.00126) ; Thomas, H. et al. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences 6, 267–274 (2009). (PMID: 10.5194/bg-6-267-2009) ; Gately, J. A. et al. Coccolithophores and diatoms resilient to ocean alkalinity enhancement: a glimpse of hope? Sci. Adv. 9, eadg606 (2023). (PMID: 10.1126/sciadv.adg6066) ; Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012). (PMID: 2281069510.1038/nature11229) ; Zhou, L. et al. Aluminum increases net carbon fixation by marine diatoms and decreases their decomposition: evidence for the iron–aluminum hypothesis. Limnol. Oceanogr. 66, 2712–2727 (2021). (PMID: 10.1002/lno.11784) ; Xiong, T. Q. et al. Legacy effects of late macroalgal blooms on dissolved inorganic carbon pool through alkalinity enhancement in coastal ocean. Environ. Sci. Technol. 57, 2186–2196 (2023). (PMID: 3669333810.1021/acs.est.2c09261) ; Su, J. et al. Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nat. Geosci. 13, 441–447 (2020). (PMID: 10.1038/s41561-020-0584-3) ; Yang, X. et al. Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans. Environ. Sci. Technol. 52, 5590–5599 (2018). (PMID: 2965871910.1021/acs.est.8b00273) ; Cai, W.-J. & Jiao, N. Wastewater alkalinity addition as a novel approach for ocean negative carbon emission. Innovation 3, 100272 (2022). This study proposes that sewage alkalization increases carbon sinks. (PMID: 358185639270238) ; Ferderer, A. et al. Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community. Biogeosciences 19, 5375–5399 (2022). (PMID: 10.5194/bg-19-5375-2022) ; Norbisrath, M. et al. Metabolic alkalinity release from large port facilities (Hamburg, Germany)and impact on coastal carbon storage. Biogeosciences 19, 5151–5165 (2022). (PMID: 10.5194/bg-19-5151-2022) ; Zhang, L. et al. Nitrifiers drive successions of particulate organic matter and microbial community composition in a starved macrocosm. Environ. Int. 157, 106776 (2021). (PMID: 3431122410.1016/j.envint.2021.106776) ; Xiao, X. et al. Biodegradation of terrigenous organic matter in a stratified large-volume water column: implications of the removal of terrigenous organic matter in the coastal ocean. Environ. Sci. Technol. 56, 5234–5246 (2022). (PMID: 3535781510.1021/acs.est.1c08317) ; Pan, Y. et al. Evaluation of the sinks and sources of atmospheric CO2 by artificial upwelling. Sci. Total Environ. 511, 692–702 (2015). (PMID: 2561618810.1016/j.scitotenv.2014.11.060) ; Zhang, D. et al. Carbon dioxide fluxes from two typical mariculture polyculture systems in coastal China. Aquaculture 521, 735041 (2020). (PMID: 10.1016/j.aquaculture.2020.735041) ; Zhang, C. et al. Eco-engineering approaches for ocean negative carbon emission. Sci. Bull. 6, 2564–2573 (2022). (PMID: 10.1016/j.scib.2022.11.016)
  • Substance Nomenclature: 7440-44-0 (Carbon) ; 142M471B3J (Carbon Dioxide)
  • Entry Date(s): Date Created: 20240316 Date Completed: 20240617 Latest Revision: 20240620
  • Update Code: 20240621

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -