Zum Hauptinhalt springen

Industrial fluoride emissions and their spatial characteristics in the Nansi Lake Basin, Eastern China.

Liu, D ; Li, X ; et al.
In: Environmental science and pollution research international, Jg. 31 (2024-04-01), Heft 18, S. 27273-27285
Online academicJournal

Titel:
Industrial fluoride emissions and their spatial characteristics in the Nansi Lake Basin, Eastern China.
Autor/in / Beteiligte Person: Liu, D ; Li, X ; Zhang, Y ; Bai, L ; Shi, H ; Qiao, Q ; Li, T ; Xu, W ; Zhou, X ; Wang, H
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 31 (2024-04-01), Heft 18, S. 27273-27285
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2024
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-024-32941-7
Schlagwort:
  • China
  • Industry
  • Fluorides analysis
  • Lakes chemistry
  • Environmental Monitoring
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2024 Apr; Vol. 31 (18), pp. 27273-27285. <i>Date of Electronic Publication: </i>2024 Mar 20.
  • MeSH Terms: Fluorides* / analysis ; Lakes* / chemistry ; Environmental Monitoring* ; China ; Industry
  • References: Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27:93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x. (PMID: 10.1111/j.1538-4632.1995.tb00338.x) ; Bai XX, Luo LN, Tian HZ, Liu SL, Hao Y, Zhao S, Lin SM, Zhu CY, Guo ZH, Lv YQ (2021) Atmospheric vanadium emission inventory from both anthropogenic and natural sources in China. Environ Sci Technol 17:11568–11578. (PMID: 10.1021/acs.est.1c04766) ; Dai SF, Ren DY, Chou CL, Finkelman RB, Seredin VV, Zhou YP (2012) Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int J Coal Geol 94:3–21. https://doi.org/10.1016/j.coal.2011.02.003. (PMID: 10.1016/j.coal.2011.02.003) ; Feng LK, Zhang J, Fan JL, Wei LL, He SF, Wu HM (2022) Tracing dissolved organic matter in inflowing rivers of Nansi Lake as a storage reservoir: implications for water-quality control. Chemosphere 286:131624. (PMID: 10.1016/j.chemosphere.2021.131624) ; Fung PL, Al-Jaghbeer O, Pirjola L, Aaltonen H, Jarvi L (2023) Exploring the discrepancy between top-down and bottom-up approaches of fine spatio-temporal vehicular CO 2 emission in an urban road network. Sci Total Environ 901:165827. (PMID: 10.1016/j.scitotenv.2023.165827) ; General Office of the People’s Government of Shandong Province. Circular of the General Office of the People’s Government of Shandong Province on printing and issuing the plan for securing satisfactory results in the critical battle to protect the water quality and sources of drinking water in Shandong Province (2018–2020) (In Chinese). http://www.shandong.gov.cn/art/2019/1/30/art_100623_25907.html . Accessed 08 May 2023. ; Huang LW, Sun ZY, Zhou AG, Bi JB, Liu YD (2022) Source and enrichment mechanism of fluoride in groundwater of the Hotan Oasis within the Tarim Basin, Northwestern China. Environ Pollut 300:118962. (PMID: 10.1016/j.envpol.2022.118962) ; Ijumulana JL, Ligate F, Bhattacharya P, Felix M, Zhang CS (2020) Spatial analysis and GIS mapping of regional hotspots and potential health risk of fluoride concentrations in groundwater of northern Tanzania. Sci Total Environ 735:139584. (PMID: 10.1016/j.scitotenv.2020.139584) ; Jannat JN, Khan MSI, Islam HMT, Islam MS, Khan R, Siddique MABS, Varol M, Tokatli C, Pal SCP, Aznarul I, Idris AM, Malafaia G, Islam ARMT (2022) Hydro-chemical assessment of fluoride and nitrate in groundwater from east and west coasts of Bangladesh and India. J Clean Prod 372:133675. (PMID: 10.1016/j.jclepro.2022.133675) ; Ji XY, Li B, Yang K, Sun ZG (2022) Spatial and temporal distribution characteristics of fluoride in surface water of China. Earth Environ 6:787–796. ; Kashyap SJ, Sankannavar R, Madhu GM (2021) Fluoride sources, toxicity and fluorosis management techniques – a brief review. J Hazard Mater Lett 2:100033. (PMID: 10.1016/j.hazl.2021.100033) ; Li Y, Wang F, Feng J, Lv JP, Liu Q, Nan FR, Zhang W, Qu WY, Xie SL (2019) Long term spatial-temporal dynamics of fluoride in sources of drinking water and associated health risks in a semiarid region of Northern China. Ecotoxicol Environ Saf 171:274–280. (PMID: 10.1016/j.ecoenv.2018.12.090) ; Li Y, Bi YH, Mi WJ, Xie SL, Ji L (2021) Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. J Hazard Mater 406:124337. (PMID: 10.1016/j.jhazmat.2020.124337) ; Li Y, Zhang MH, Mi WJ, Ji L, He QS, Xie SL, Xiao C, Bi YH (2024) Spatial distribution of groundwater fluoride and arsenic and its related disease in typical drinking endemic regions. Sci Total Environ 906:167716. (PMID: 10.1016/j.scitotenv.2023.167716) ; Liu SH, Zhou J, Wu J (2019) Study on the source and control of fluorine pollution in Yangcheng Lake area of Suzhou City. J Green Sci Technol 02:40–42. ; Liu DD, Bai L, Qiao Q, Zhang Y, Li XY, Zhao RN, Liu JY (2021) Anthropogenic total phosphorus emissions to the Tuojiang River Basin. China J Clean Prod 294:126325. (PMID: 10.1016/j.jclepro.2021.126325) ; Liu DD, Bai L, Li XY, Zhang Y, Qiao Q, Lu ZB, Liu JY (2022) Spatial characteristics and driving forces of anthropogenic phosphorus emissions in the Yangtze River Economic Belt. China Resour Conserv Recycl 176:105937. (PMID: 10.1016/j.resconrec.2021.105937) ; Lu MS, Han BP (2014) Study on characteristics and its genesis mechanism of underground water with high fluorine in NansiLake drainage area [C]. Proceedings of the development forum on coalfield geological work under the new situation of the coalfield geological professional committee of Shandong coal society 90-93:96. ; Makete N, Rizzu M, Seddaiu G, Gohole L, Otinga A (2022) Fluoride toxicity in cropping systems: mitigation, adaptation strategies and related mechanisms A review. Sci Total Environ 833:155129. (PMID: 10.1016/j.scitotenv.2022.155129) ; Ning CY, Xing CJ, Xu LR (2023) Study on the distribution and influencing factors of fluoride in main rivers of Heze City. Environ Monit China 39:36–51. ; Olejarczyk M, Rykowska I, Urbaniak W (2022) Management of solid waste containing fluoride—a review. Materials 15:3461. (PMID: 10.3390/ma15103461) ; Pandey PC, Kumar P, Tomar V, Rani M, Katiyar S, Nathawat MS (2015) Modelling spatial variation of fluoride pollutant using geospatial approach in the surrounding environment of an aluminium industries. Environ Earth Sci 74:7801–7812. (PMID: 10.1007/s12665-015-4563-8) ; Podgorski JE, Labhasetwar P, Saha D, Berg M (2018) Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environ Sci Technol 52:9889–9898. (PMID: 10.1021/acs.est.8b01679) ; Qiu HL, Gui HR, Xu HF, Cui L, Yu H (2022) Occurrence, controlling factors and noncarcinogenic risk assessment based on Monte Carlo simulation of fluoride in mid-layer groundwater of Huaibei mining area, North China. Sci Total Environ 856:159112. (PMID: 10.1016/j.scitotenv.2022.159112) ; Seya H (2020) Chapter three - Global and local indicators of spatial associations. In: Yamagata Y, Seya H (eds) Spatial analysis using big data. Academic Press, pp 33–56. (PMID: 10.1016/B978-0-12-813127-5.00003-5) ; Su H, Kang WD, Li YR, Li Z (2021) Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: sources and related human health risks. Environ Pollut 286:117287. (PMID: 10.1016/j.envpol.2021.117287) ; Su CL, Wang MZ, Xie XJ, Han ZT, Jiang JQ, Wang Z, Xiao DW (2023) Natural and anthropogenic factors regulating fluoride enrichment in groundwater of the Nansi Lake Basin, Northern China. Sci Total Environ 904:166699. (PMID: 10.1016/j.scitotenv.2023.166699) ; Szewczynska M, Pagowska E, Pyrzynska K (2015) Emissions of fluorides from welding processes. J Environ Sci 37:179–183. (PMID: 10.1016/j.jes.2015.03.024) ; USEPA (2007) Emissions factor uncertainty assessment. Research Triangle Park, NC: Environmental Protection Agency. https://www.epa.gov/air-emissions-factors-and-quantification/emissions-factor-uncertainty-assessment . Accessed 18 Mar 2024. ; Wan KL, Huang L, Yan J, Ma BY, Huang XJ, Luo ZX, Zhang HG, Xiao TF (2021) Removal of fluoride from industrial wastewater by using different adsorbents: a review. Sci Total Environ 773:145535. (PMID: 10.1016/j.scitotenv.2021.145535) ; Wang M, Li X, He WY, Li JX, Zhu YY, Liao YL, Yang JY, Yang XE (2019) Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, Southwest China. Environ Pollut 249:423–433. (PMID: 10.1016/j.envpol.2019.03.044) ; Wang MH, Wang HY, Lei G, Yang B, Hu T, Ye YY, Li W, Zhou YY, Yang X, Xu HQ (2023) Current progress on fluoride occurrence in the soil environment: sources, transformation, regulations and remediation. Chemosphere 341:139901. (PMID: 10.1016/j.chemosphere.2023.139901) ; Wu SY, Wang YJ, Iqbal M, Mehmood K, Li Y, Tang ZX, Zhang H (2022) Challenges of fluoride pollution in environment: mechanisms and pathological significance of toxicity - a review. Environ Pollut 304:119241. (PMID: 10.1016/j.envpol.2022.119241) ; Zhang LX, Ulgiati S, Yang ZF, Chen B (2011) Emergy evaluation and economic analysis of three wetland fish farming systems in Nansi Lake area, China. J Environ Manage 92:683–694. (PMID: 10.1016/j.jenvman.2010.10.005) ; Zhang GD, Liu XH, Lu SY, Zhang JP, Wang WL (2020) Occurrence of typical antibiotics in Nansi Lake’s inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model. Chemosphere 242:125269. (PMID: 10.1016/j.chemosphere.2019.125269) ; Zhang SS, Wu QL, Ji HH (2022) Research on zero discharge treatment technology of mine wastewater. Energy Rep 8:275–280. (PMID: 10.1016/j.egyr.2022.01.014) ; Zhang ZQ, Deng CN, Dong L, Zou TS, Yang QP, Wu J, Li HS (2023) Evaluating the anthropogenic nitrogen emissions to water using a hybrid approach in a city cluster: insights into historical evolution, attribution, and mitigation potential. Sci Total Environ 855:158500. (PMID: 10.1016/j.scitotenv.2022.158500) ; Zhao ZQ, Qin W, Bai ZH, Ma L (2019) Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China. Agr Water Manage 212:262–272. (PMID: 10.1016/j.agwat.2018.09.002) ; Zhou K, Wu JX, Liu HC (2021) Spatiotemporal variations and determinants of water pollutant discharge in the Yangtze River Economic Belt, China: a spatial econometric analysis. Environ Pollut 271:116320. (PMID: 10.1016/j.envpol.2020.116320)
  • Grant Information: 2022HKYJWJT2 the Open Research Fund of State Environmental Protection Key Laboratory of Eco-industry, Chinese Research Academy of Environmental Sciences; 2022HKYJWJT2 the Fundamental Research Funds for the Central Public-interest Scientific Institution; 37000000040200920220001 the Investigation and evaluation project of groundwater environmental conditions in the Nansi Lake Basin
  • Contributed Indexing: Keywords: Differentiation strategy; Emission inventory; Fluoride management; Industrial fluoride
  • Substance Nomenclature: Q80VPU408O (Fluorides)
  • Entry Date(s): Date Created: 20240320 Date Completed: 20240426 Latest Revision: 20240502
  • Update Code: 20240503

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -