Zum Hauptinhalt springen

The longevity evaluation of multi-metal stabilization by MgO in Pb/Zn smelter-contaminated soils.

Xu, ZL ; Xu, DM ; et al.
In: Environmental science and pollution research international, Jg. 31 (2024-04-01), Heft 19, S. 28153-28165
Online academicJournal

Titel:
The longevity evaluation of multi-metal stabilization by MgO in Pb/Zn smelter-contaminated soils.
Autor/in / Beteiligte Person: Xu, ZL ; Xu, DM ; Li, HX ; Li, HK ; Fu, RB
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 31 (2024-04-01), Heft 19, S. 28153-28165
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2024
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-024-32790-4
Schlagwort:
  • China
  • Environmental Restoration and Remediation methods
  • Soil Pollutants chemistry
  • Lead chemistry
  • Soil chemistry
  • Magnesium Oxide chemistry
  • Zinc chemistry
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2024 Apr; Vol. 31 (19), pp. 28153-28165. <i>Date of Electronic Publication: </i>2024 Mar 26.
  • MeSH Terms: Soil Pollutants* / chemistry ; Lead* / chemistry ; Soil* / chemistry ; Magnesium Oxide* / chemistry ; Zinc* / chemistry ; China ; Environmental Restoration and Remediation / methods
  • References: Al-Tabbaa A, Barker P, Evans CW (2011) Soil mix technology for land remediation: recent innovations. Proc Inst Civ Eng-Ground Improv 164:127–137. https://doi.org/10.1680/grim.2011.164.3.127. (PMID: 10.1680/grim.2011.164.3.127) ; Azeem M, Ali A, Jeyasundar PGSA, Li Y, Abdelrahman H, Latif A, Li R, Basta N, Li G, Shaheen SM (2021) Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil. Environ Pollut 277:116800. https://doi.org/10.1016/j.envpol.2021.116800. (PMID: 10.1016/j.envpol.2021.116800) ; Bade R, Oh S, Shin WS (2012) Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotoxicol Environ Saf 80:299–307. https://doi.org/10.1016/j.ecoenv.2012.03.019. (PMID: 10.1016/j.ecoenv.2012.03.019) ; Cappuyns V, Swennen R (2008) The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. J Hazard Mater 158:185–195. https://doi.org/10.1016/j.jhazmat.2008.01.058. (PMID: 10.1016/j.jhazmat.2008.01.058) ; Cappuyns V, Alian V, Vassilieva E, Swennen R (2014) pH dependent leaching behavior of Zn, Cd, Pb, Cu and As from mining wastes and slags: kinetics and mineralogical control. Waste Biomass Valorization 5:355–368. https://doi.org/10.1007/s12649-013-9274-3. (PMID: 10.1007/s12649-013-9274-3) ; Chen L, Nakamura K, Hama T (2023) Review on stabilization/solidification methods and mechanism of heavy metals based on OPC-based binders. J Environ Manag 332:117362. https://doi.org/10.1016/j.jenvman.2023.117362. (PMID: 10.1016/j.jenvman.2023.117362) ; Cui H, Li D, Liu X, Fan Y, Zhang X, Zhang S, Zhou J, Fang G, Zhou J (2021) Dry-wet and freeze-thaw aging activate endogenous copper and cadmium in biochar. J Clean Prod 288:125605. https://doi.org/10.1016/j.jclepro.2020.125605. (PMID: 10.1016/j.jclepro.2020.125605) ; Deprez M, De Kock T, De Schutter G, Cnudde V (2020) A review on freeze-thaw action and weathering of rocks. Earth-Sci Rev 203. https://doi.org/10.1016/j.earscirev.2020.103143. ; Di Gianfilippo M, Verginelli I, Costa G, Spagnuolo R, Gavasci R, Lombardi F (2018) A risk-based approach for assessing the recycling potential of an alkaline waste material as road sub-base filler material. Waste Manag 71:440–453. https://doi.org/10.1016/j.wasman.2017.10.006. (PMID: 10.1016/j.wasman.2017.10.006) ; Dinis L, Bégin C, Savard MM, Parent M (2021) Impacts of smelter atmospheric emissions on forest nutrient cycles: evidence from soils and tree rings. Sci Total Environ 751:141427. https://doi.org/10.1016/j.scitotenv.2020.141427. (PMID: 10.1016/j.scitotenv.2020.141427) ; Du H, Peacock CL, Chen W, Huang Q (2018a) Binding of Cd by ferrihydrite organo-mineral composites: implications for Cd mobility and fate in natural and contaminated environments. Chemosphere 207:404–412. https://doi.org/10.1016/j.chemosphere.2018.05.092. (PMID: 10.1016/j.chemosphere.2018.05.092) ; Du H, Nie N, Rao W, Lu L, Lei M, Tie B (2021) Ferrihydrite–organo composites are a suitable analog for predicting Cd (II)–As (V) coexistence behaviors at the soil solid-liquid interfaces. Environ Pollut 290:118040. https://doi.org/10.1016/j.envpol.2021.118040. (PMID: 10.1016/j.envpol.2021.118040) ; Du H, Li Y, Wan D, Sun C, Sun J (2022) Tungsten distribution and vertical migration in soils near a typical abandoned tungsten smelter. J Hazard Mater 429:128292. https://doi.org/10.1016/j.jhazmat.2022.128292. (PMID: 10.1016/j.jhazmat.2022.128292) ; Fang W, Wei Y, Liu J (2016) Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics. J Hazard Mater 310:1–10. https://doi.org/10.1016/j.jhazmat.2016.02.025. (PMID: 10.1016/j.jhazmat.2016.02.025) ; Garcı́a MA, Chimenos JM, Fernández AI, Miralles L, Segarra M, Espiell F (2004) Low-grade MgO used to stabilize heavy metals in highly contaminated soils. Chemosphere 56(5):481–491. https://doi.org/10.1016/j.chemosphere.2004.04.005. (PMID: 10.1016/j.chemosphere.2004.04.005) ; Garrabrants AC, Kosson DS, Brown KG, Fagnant DP, Helms G, Thorneloe SA (2021) Demonstration of the use of test results from the Leaching Environmental Assessment Framework (LEAF) to develop screening-level leaching assessments. Waste Manag 121:226–236. https://doi.org/10.1016/j.wasman.2020.12.016. (PMID: 10.1016/j.wasman.2020.12.016) ; Gérard F (2016) Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—a myth revisited. Geoderma 262:213–226. https://doi.org/10.1016/j.geoderma.2015.08.036. (PMID: 10.1016/j.geoderma.2015.08.036) ; Hou R, Wang L, O’Connor D, Tsang DC, Rinklebe J, Hou D (2020) Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: implications for sustainable agricultural management in seasonally frozen land. Environ Int 144:106040. https://doi.org/10.1016/j.envint.2020.106040. (PMID: 10.1016/j.envint.2020.106040) ; Houba V, Temminghoff E, Gaikhorst G, Van Vark W (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant Anal 31:1299–1396. https://doi.org/10.1080/00103620009370514. (PMID: 10.1080/00103620009370514) ; Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92:1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055. (PMID: 10.1016/j.chemosphere.2013.03.055) ; Hui X, Wan Y, He X, Li JS, Huang X, Liu L, Xue Q (2023) Using alkali-activated dredge sludge ash-bentonite for low permeability cutoff walls: the engineering properties and micromechanism. Environ Technol Innov 30:103060. https://doi.org/10.1016/j.eti.2023.103060. (PMID: 10.1016/j.eti.2023.103060) ; Komonweeraket K, Cetin B, Aydilek AH, Benson CH, Edil TB (2015) Effects of pH on the leaching mechanisms of elements from fly ash mixed soils. Fuel 140:788–802. https://doi.org/10.1016/j.fuel.2014.09.068. (PMID: 10.1016/j.fuel.2014.09.068) ; Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste Manag 28(1):215–225. https://doi.org/10.1016/j.wasman.2006.12.012. (PMID: 10.1016/j.wasman.2006.12.012) ; Lee SH, Lee JS, Choi YJ, Kim JG (2009) In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77:1069–1075. https://doi.org/10.1016/j.chemosphere.2009.08.056. (PMID: 10.1016/j.chemosphere.2009.08.056) ; Li W, Yi Y (2019b) Stabilization/solidification of lead- and zinc-contaminated soils using MgO and CO 2 . J CO2 Util 33:215–221. https://doi.org/10.1016/j.jcou.2019.05.029. (PMID: 10.1016/j.jcou.2019.05.029) ; Li P, Lin C, Cheng H, Duan X, Lei K (2015) Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol Environ Saf 113:391–399. https://doi.org/10.1016/j.ecoenv.2014.12.025. (PMID: 10.1016/j.ecoenv.2014.12.025) ; Li H, Ou J, Wang X, Yan Z, Zhou Y (2018) Immobilization of soil cadmium using combined amendments of illite/smectite clay with bone chars. Environ Sci Pollut Res 25:20723–20731. https://doi.org/10.1007/s11356-018-2227-4. (PMID: 10.1007/s11356-018-2227-4) ; Li W, Ni P, Yi Y (2019a) Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils. Sci Total Environ 671:741–753. https://doi.org/10.1016/j.scitotenv.2019.03.270. (PMID: 10.1016/j.scitotenv.2019.03.270) ; Liu C, Shi B, Zhou J, Tang C (2011) Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials. Appl Clay Sci 54:97–106. https://doi.org/10.1016/j.clay.2011.07.022. (PMID: 10.1016/j.clay.2011.07.022) ; Liu J, Zha F, Xu L, Kang B, Yang C, Zhang W, Zhang J, Liu Z (2020) Zinc leachability in contaminated soil stabilized/solidified by cement-soda residue under freeze-thaw cycles. Appl Clay Sci 186:105474. https://doi.org/10.1016/j.clay.2020.105474. (PMID: 10.1016/j.clay.2020.105474) ; Liu W, Sun Y, Zhang J, Li W, Wang L, Yu J, Qin X (2023) Influence of H2O/MgCl2 molar ratio on strength properties of the magnesium oxychloride cement solidified soft clay and its associated mechanisms. Constr Build Mater 393:132018. https://doi.org/10.1016/j.conbuildmat.2023.132018. (PMID: 10.1016/j.conbuildmat.2023.132018) ; Liu MX, Hou RJ, Fu Q, Li TX, Zhang SJ, Su AS (2022) Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China. Environ Pollut 313. https://doi.org/10.1016/j.envpol.2022.120143. ; Lu L, Luo Z, Yu X, Li Y, Cui H, Khan S, Lei M, Du H (2024) Oxidative weathering of neutral mine drainage from gold mine tailings impoundment: tracking formation and transformation of biogenic iron minerals and the associated arsenic. ACS Earth Space Chem 8(2):335–347. https://doi.org/10.1021/acsearthspacechem.3c00314. (PMID: 10.1021/acsearthspacechem.3c00314) ; Luo Z, Li Z, Sun J, Shi K, Lei M, Tie B, Du H (2023) Multiple mechanisms collectively mediate tungsten homeostasis and resistance in Citrobacter sp. Lzp2. J Hazard Mater 448:130877. https://doi.org/10.1016/j.jhazmat.2023.130877. (PMID: 10.1016/j.jhazmat.2023.130877) ; Lwin CS, Kim YN, Lee M, Kim KR (2023) Sorption of As, Cd, and Pb by soil amendments: in situ immobilization mechanisms and implementation in contaminated agricultural soils. Environ Sci Pollut Res 30(48):105732–105741. https://doi.org/10.1007/s11356-023-29298-8. (PMID: 10.1007/s11356-023-29298-8) ; Mahar A, Wang P, Ali A, Guo ZY, Awasthi MK, Lahori AH, Wang Q, Shen F, Li R, Zhang Z (2016) Impact of CaO, fly ash, sulfur and Na2S on the (im) mobilization and phytoavailability of Cd, Cu and Pb in contaminated soil. Ecotoxicol Environ Saf 2016(134):116–123. https://doi.org/10.1016/j.ecoenv.2016.08.025. (PMID: 10.1016/j.ecoenv.2016.08.025) ; Mahedi M, Cetin B, Dayioglu AY (2019) Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils. Waste Manag 95:334–355. https://doi.org/10.1016/j.wasman.2019.06.018. (PMID: 10.1016/j.wasman.2019.06.018) ; Mahedi M, Cetin B, Dayioglu AY (2020) Effect of cement incorporation on the leaching characteristics of elements from fly ash and slag treated soils. J Environ Manag 253:109720. https://doi.org/10.1016/j.jenvman.2019.109720. (PMID: 10.1016/j.jenvman.2019.109720) ; Maierdan Y, Cui Q, Chen B, Aminul Haque M, Yiming A (2021) Effect of varying water content and extreme weather conditions on the mechanical performance of sludge bricks solidified/stabilized by hemihydrate phosphogypsum, slag, and cement. Constr Build Mater 310:125286. https://doi.org/10.1016/j.conbuildmat.2021.125286. (PMID: 10.1016/j.conbuildmat.2021.125286) ; Meng ZW, Huang S, Laird DA, Wu JW, Lin ZB (2022) Identifying key processes driving Cd long-term adsorption and immobilization by biochar in soils and evaluating combined aging effects under simulated local climates. J Environ Chem Eng 10. https://doi.org/10.1016/j.jece.2022.108636. ; Miretzky P, Cirelli AF (2010) Remediation of arsenic-contaminated soils by iron amendments: a review. Crit Rev Environ Sci Technol 40(2):93–115. https://doi.org/10.1080/10643380802202059. (PMID: 10.1080/10643380802202059) ; Pan Z, Zhang C, Li Y, Yang C (2022) Solidification/stabilization of gold ore tailings powder using sustainable waste-based composite geopolymer. Eng Geol 309:106793. https://doi.org/10.1016/j.enggeo.2022.106793. (PMID: 10.1016/j.enggeo.2022.106793) ; Payán MC, Verbinnen B, Galan B, Coz A, Vandecasteele C, Viguri JR (2012) Potential influence of CO 2 release from a carbon capture storage site on release of trace metals from marine sediment. Environ Pollut 162:29–39. https://doi.org/10.1016/j.envpol.2011.10.015. (PMID: 10.1016/j.envpol.2011.10.015) ; Reddy VA, Solanki CH, Kumar S, Reddy KR, Du YJ (2022) Comparison of limestone calcined clay cement and ordinary Portland cement for stabilization/solidification of Pb-Zn smelter residue. Environ Sci Pollut Res 29:11393–11404. https://doi.org/10.1007/s11356-021-16421-w. (PMID: 10.1007/s11356-021-16421-w) ; Rui D, Wu Z, Ji M, Liu J, Wang S, Ito Y (2019) Remediation of Cd- and Pb- contaminated clay soils through combined freeze-thaw and soil washing. J Hazard Mater 369:87–95. https://doi.org/10.1016/j.jhazmat.2019.02.038. (PMID: 10.1016/j.jhazmat.2019.02.038) ; Sarkkinen M, Kujala K, Gehör S (2019) Efficiency of MgO activated GGBFS and OPC in the stabilization of highly sulfidic mine tailings. J Sustain Min 18:115–126. https://doi.org/10.1016/j.jsm.2019.04.001. (PMID: 10.1016/j.jsm.2019.04.001) ; Shen Z, Pan S, Hou D, O’Connor D, Jin F, Mo L, Xu D, Zhang Z, Alessi D (2019) Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. Environ Int 131:104990. https://doi.org/10.1016/j.envint.2019.104990. (PMID: 10.1016/j.envint.2019.104990) ; Tresintsi S, Simeonidis K, Katsikini M, Paloura EC, Bantsis G, Mitrakas M (2014) A novel approach for arsenic adsorbents regeneration using MgO. J Hazard Mater 265:217–225. https://doi.org/10.1016/j.jhazmat.2013.12.003. (PMID: 10.1016/j.jhazmat.2013.12.003) ; Wang D, Xiao J, He F, Zhou Y (2019) Durability evolution and associated micro-mechanisms of carbonated reactive MgO-fly ash solidified sludge from East Lake, China. Constr Build Mater 208:1–12. https://doi.org/10.1016/j.conbuildmat.2019.02.173. (PMID: 10.1016/j.conbuildmat.2019.02.173) ; Xia WY, Du YJ, Li FS, Guo GL, Yan XL, Li CP, Arulrajah A, Wang F, Wang S (2019) Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter. Constr Build Mater 210:278–288. https://doi.org/10.1016/j.conbuildmat.2019.03.195. (PMID: 10.1016/j.conbuildmat.2019.03.195) ; Xu DM, Fu RB (2022a) A comparative assessment of metal bioavailability using various universal extractants for smelter contaminated soils: novel insights from mineralogy analysis. J Clean Prod 367:132936. https://doi.org/10.1016/j.jclepro.2022.132936. (PMID: 10.1016/j.jclepro.2022.132936) ; Xu DM, Fu RB (2022b) Mechanistic insight into the release behavior of arsenic (As) based on its geochemical fractions in the contaminated soils around lead/zinc (Pb/Zn) smelters. J Clean Prod 363:132348. https://doi.org/10.1016/j.jclepro.2022.132348. (PMID: 10.1016/j.jclepro.2022.132348) ; Xu DM, Fu RB (2022c) The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario. J Hazard Mater 437:129368. https://doi.org/10.1016/j.jhazmat.2022.129368. (PMID: 10.1016/j.jhazmat.2022.129368) ; Xu DM, Fu RB, Wang JX, Shi YX, Guo XP (2021a) Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods-a critical review. J Clean Prod 321:128730. https://doi.org/10.1016/j.jclepro.2021.128730. (PMID: 10.1016/j.jclepro.2021.128730) ; Xu L, Dai H, Skuza L, Wei S (2021b) Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites. Chemosphere 285:131350. https://doi.org/10.1016/j.chemosphere.2021.131350. (PMID: 10.1016/j.chemosphere.2021.131350) ; Xu DM, Fu RB, Wang JX, An BH (2022a) The geochemical behaviors of potentially toxic elements in a typical lead/zinc (Pb/Zn) smelter contaminated soil with quantitative mineralogical assessments. J Hazard Mater 424:127127. https://doi.org/10.1016/j.jhazmat.2021.127127. (PMID: 10.1016/j.jhazmat.2021.127127) ; Xu Z, Liu X, Peng J, Qu C, Chen Y, Zhang M, Laing D, Lei M, Tie B, Du H (2022b) Tungsten–humic substances complexation. Carbon Res 1(1):11. https://doi.org/10.1007/s44246-022-00014-4. (PMID: 10.1007/s44246-022-00014-4) ; Xu Z, Nie N, Liu K, Li Q, Cui H, Du H (2023) Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils. Sci Total Environ 877:162929. https://doi.org/10.1016/j.scitotenv.2023.162929. (PMID: 10.1016/j.scitotenv.2023.162929) ; Yang ZP, Yao W, Li XY, Ren SP, Hui X, Chang JZ (2021) The effect of long-term freeze-thaw cycles on the stabilization of lead in compound solidified/stabilized lead-contaminated soil. Environ Sci Pollut Res 28:37413–37423. https://doi.org/10.1007/s11356-021-13401-y. (PMID: 10.1007/s11356-021-13401-y) ; Yang B, Qiu H, Zhang P, He E, Xia B, Liu Y, Zhao L, Xu X, Cao X (2022) Modeling and visualizing the transport and retention of cationic and oxyanionic metals (Cd and Cr) in saturated soil under various hydrochemical and hydrodynamic conditions. Sci Total Environ 812:151467. https://doi.org/10.1016/j.scitotenv.2021.151467. (PMID: 10.1016/j.scitotenv.2021.151467) ; Yang X, Hou R, Fu Q, Li T, Wang J, Su Z, Shen W, Zhou W, Wang Y (2023) Effect of freeze-thaw cycles and biochar coupling on the soil water-soil environment, nitrogen adsorption and N2O emissions in seasonally frozen regions. Sci Total Environ 893:164845. https://doi.org/10.1016/j.scitotenv.2023.164845. (PMID: 10.1016/j.scitotenv.2023.164845) ; Zhang P, Fan J, Xu X, Xu Z, Yu Y, Zhao L, Qiu H, Cao X (2022a) Contrasting effects of dry-wet and freeze-thaw aging on the immobilization of As in As-contaminated soils amended by zero-valent iron-embedded biochar. J Hazard Mater 426:128123. https://doi.org/10.1016/j.jhazmat.2021.128123. (PMID: 10.1016/j.jhazmat.2021.128123) ; Zhang Y, Lu X, Yu R, Li J, Miao J, Wang F (2022b) Long-term leachability of Sb in smelting residue stabilized by reactive magnesia under accelerated exposure to strong acid rain. J Environ Manag 301:113840. https://doi.org/10.1016/j.jenvman.2021.113840. (PMID: 10.1016/j.jenvman.2021.113840) ; Zou Q, Li D, Jiang J, Aihemaiti A, Gao Y, Liu N, Liu J (2019) Geochemical simulation of the stabilization process of vanadium-contaminated soil remediated with calcium oxide and ferrous sulfate. Ecotoxicol Environ Saf 174:498–505. https://doi.org/10.1016/j.ecoenv.2019.02.082. (PMID: 10.1016/j.ecoenv.2019.02.082)
  • Grant Information: 2019YFC1805205 Tongji University
  • Contributed Indexing: Keywords: Acidification; Contaminated soils; Freeze–thaw cycles; MgO stabilization; Variable pH
  • Substance Nomenclature: 0 (Soil Pollutants) ; 2P299V784P (Lead) ; 0 (Soil) ; 3A3U0GI71G (Magnesium Oxide) ; J41CSQ7QDS (Zinc)
  • Entry Date(s): Date Created: 20240326 Date Completed: 20240429 Latest Revision: 20240429
  • Update Code: 20240501

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -