Zum Hauptinhalt springen

Post-weaning social isolation modifies neonatal anoxia-induced changes in energy metabolism and growth of rats.

Cruz-Ochoa, NA ; Motta-Teixeira, LC ; et al.
In: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience, Jg. 84 (2024-06-01), Heft 4, S. 293-304
Online academicJournal

Titel:
Post-weaning social isolation modifies neonatal anoxia-induced changes in energy metabolism and growth of rats.
Autor/in / Beteiligte Person: Cruz-Ochoa, NA ; Motta-Teixeira, LC ; Cruz-Ochoa, PF ; Lopez-Paredes, S ; Ochoa-Amaya, JE ; Takada, SH ; Xavier, GF ; Nogueira, MI
Link:
Zeitschrift: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience, Jg. 84 (2024-06-01), Heft 4, S. 293-304
Veröffentlichung: 2020- : Hoboken, NJ : John Wiley & Sons, Inc. ; <i>Original Publication</i>: Oxford : New York : Pergamon Press, c1983-, 2024
Medientyp: academicJournal
ISSN: 1873-474X (electronic)
DOI: 10.1002/jdn.10327
Schlagwort:
  • Animals
  • Male
  • Female
  • Rats
  • Leptin blood
  • Leptin metabolism
  • Blood Glucose metabolism
  • Insulin blood
  • Insulin metabolism
  • Weaning
  • Age Factors
  • Social Isolation psychology
  • Rats, Wistar
  • Animals, Newborn
  • Energy Metabolism physiology
  • Eating physiology
  • Hypoxia metabolism
  • Body Weight physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Int J Dev Neurosci] 2024 Jun; Vol. 84 (4), pp. 293-304. <i>Date of Electronic Publication: </i>2024 Mar 26.
  • MeSH Terms: Social Isolation* / psychology ; Rats, Wistar* ; Animals, Newborn* ; Energy Metabolism* / physiology ; Eating* / physiology ; Hypoxia* / metabolism ; Body Weight* / physiology ; Animals ; Male ; Female ; Rats ; Leptin / blood ; Leptin / metabolism ; Blood Glucose / metabolism ; Insulin / blood ; Insulin / metabolism ; Weaning ; Age Factors
  • References: Adstamongkonkul, D., & Hess, D. C. (2017). Ischemic conditioning and neonatal hypoxic ischemic encephalopathy: A literature review. Conditioning Medicine, 1, 9–16. ; Bertile, F., & Raclot, T. (2006). The melanocortin system during fasting. Peptides, 27, 291–300. https://doi.org/10.1016/j.peptides.2005.03.063. ; Blencowe, H., Cousens, S., Oestergaard, M. Z., Chou, D., Moller, A. B., Narwal, R., Adler, A., Vera Garcia, C., Rohde, S., Say, L., & Lawn, J. E. (2012). National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet, 379, 2162–2172. https://doi.org/10.1016/S0140-6736(12)60820-4. ; Bullitt, E. (1990). Expression of C‐fos‐like protein as a marker for neuronal activity following noxious stimulation in the rat. The Journal of Comparative Neurology, 296, 517–530. https://doi.org/10.1002/cne.902960402. ; Caixeta, D. C., Teixeira, R. R., Peixoto, L. G., Machado, H. L., Baptista, N. B., De Souza, A. V., Vilela, D. D., Franci, C. R., & Salmen Espindola, F. (2018). Adaptogenic potential of royal jelly in liver of rats exposed to chronic stress. PLoS ONE, 13, e0191889. https://doi.org/10.1371/journal.pone.0191889. ; Challet, E., Le Maho, Y., Robin, J. P., Malan, A., & Cherel, Y. (1995). Involvement of corticosterone in the fasting‐induced rise in protein utilization and locomotor activity. Pharmacology, Biochemistry, and Behavior, 50, 405–412. https://doi.org/10.1016/0091-3057(94)00287-S. ; Chen, Y., & Baram, T. Z. (2016). Toward understanding how early‐life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology, 41, 197–206. https://doi.org/10.1038/npp.2015.181. ; Crujeiras, A. B., Carreira, M. C., Cabia, B., Andrade, S., Amil, M., & Casanueva, F. F. (2015). Leptin resistance in obesity: An epigenetic landscape. Life Sciences, 140, 57–63. https://doi.org/10.1016/j.lfs.2015.05.003. ; Cruz‐Ochoa, N. A., Ochoa‐Amaya, J. E., Pulecio, S. L., Xavier, G. F., & Nogueira, M. I. (2019). Neonatal anoxia impairs long‐term energy metabolism and somatic development of Wistar rats. International Journal of Developmental Neuroscience, 79, 76–85. https://doi.org/10.1016/j.ijdevneu.2019.11.001. ; Doucet, E., & Tremblay, A. (1997). Food intake, energy balance and body weight control. European Journal of Clinical Nutrition, 51, 846–855. https://doi.org/10.1038/sj.ejcn.1600497. ; Elias, C. F., Aschkenasi, C., Lee, C., Kelly, J., Ahima, R. S., Bjorbæk, C., Flier, J. S., Saper, C. B., & Elmquist, J. K. (1999). Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron, 23, 775–786. https://doi.org/10.1016/S0896-6273(01)80035-0. ; Elmquist, J. K., Elias, C. F., & Saper, C. B. (1999). From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron, 22, 221–232. https://doi.org/10.1016/S0896-6273(00)81084-3. ; Fonzo, G. A., Ramsawh, H. J., Flagan, T. M., Simmons, A. N., Sullivan, S. G., Allard, C. B., Paulus, M. P., & Stein, M. B. (2016). Early life stress and the anxious brain: Evidence for a neural mechanism linking childhood emotional maltreatment to anxiety in adulthood. Psychological Medicine, 45, 1037–1054. https://doi.org/10.1017/S0033291715002603. ; Frederich, R. C., Löllmann, B., Hamann, A., Napolitano‐Rosen, A., Kahn, B. B., Lowell, B. B., & Flier, J. S. (1995). Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. The Journal of Clinical Investigation, 96, 1658–1663. https://doi.org/10.1172/JCI118206. ; Gopagondanahalli, K. R., Li, J., Fahey, M. C., Hunt, R. W., Jenkin, G., Miller, S. L., & Malhotra, A. (2016). Preterm hypoxic‐ischemic encephalopathy. Frontiers in Pediatrics, 4, 1–10. ; Grojean, S., Schroeder, H., Pourié, G., Charriaut‐Marlangue, C., Koziel, V., Desor, D., Vert, P., & Daval, J. L. (2003). Histopathological alterations and functional brain deficits after transient hypoxia in the newborn rat pup: A long term follow‐up. Neurobiology of Disease, 14, 265–278. https://doi.org/10.1016/S0969-9961(03)00082-2. ; Grundwald, N. J., & Brunton, P. J. (2015). Prenatal stress programs neuroendocrine stress responses and affective behaviors in second generation rats in a sex‐dependent manner. Psychoneuroendocrinology, 62, 204–216. https://doi.org/10.1016/j.psyneuen.2015.08.010. ; Keesom, S. M., Morningstar, M. D., Sandlain, R., Wise, B. M., & Hurley, L. M. (2018). Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Research, 1694, 94–103. https://doi.org/10.1016/j.brainres.2018.05.010. ; Kohlhauser, C., Kaehler, S., Mosgoeller, W., Singewald, N., Kouvelas, D., Prast, H., Hoeger, H., & Lubec, B. (1999). Histological changes and neurotransmitter levels three months following perinatal asphyxia in the rat. Life Sciences, 64, 2109–2124. https://doi.org/10.1016/S0024-3205(99)00160-5. ; Kumar, A. J., Takada, S. H., Motta‐Teixeira, L. C., Lee, V. Y., Xavier, G. F., & Nogueira, M. I. (2017). Sex differences in somatic and sensory motor development after neonatal anoxia in Wistar rats. Behavioural Brain Research, 333, 242–250. https://doi.org/10.1016/j.bbr.2017.07.009. ; Kurinczuk, J. J., White‐Koning, M., & Badawi, N. (2010). Epidemiology of neonatal encephalopathy and hypoxic‐ischaemic encephalopathy. Early Human Development, 86, 329–338. https://doi.org/10.1016/j.earlhumdev.2010.05.010. ; Liu, L., Oza, S., Hogan, D., Chu, Y., Perin, J., Zhu, J., Lawn, J. E., Cousens, S., Mathers, C., & Black, R. E. (2016). Global, regional, and national causes of under‐5 mortality in 2000–15: An updated systematic analysis with implications for the sustainable development goals. Lancet, 388, 3027–3035. https://doi.org/10.1016/S0140-6736(16)31593-8. ; Luna‐Illades, C., Morales, T., & Miranda‐anaya, M. (2017). Decreased food anticipatory activity of obese mice relates to hypothalamic c‐Fos expression. Physiology & Behavior, 179, 9–15. https://doi.org/10.1016/j.physbeh.2017.05.020. ; Matsuda, V. D. V., Tejada, M. B., Motta‐Teixeira, L. C., Ikebara, J. M., Cardoso, D. S., Machado‐Nils, A. V., Lee, V. Y., Diccini, I., Arruda, B. P., Martins, P. P., Dias, N. M. M., Tessarotto, R. P., Raeisossadati, R., Bruno, M., Takase, L. F., Kihara, A. H., Nogueira, M. I., Xavier, G. F., & Takada, S. H. (2021). Impact of neonatal anoxia and hypothermic treatment on development and memory of rats. Experimental Neurology, 340, 113691. https://doi.org/10.1016/j.expneurol.2021.113691. ; Morgan, J. I., Cohen, D. R., Hempstead, J. L., & Curran, T. O. M. (1987). Mapping patterns of c‐fos expression in the central nervous system after seizure. Science, 237, 192–197. https://doi.org/10.1126/science.3037702. ; Mumtaz, F., Khan, M. I., Zubair, M., & Dehpour, A. R. (2018). Neurobiology and consequences of social isolation stress in animal model—A comprehensive review. Biomedicine & Pharmacotherapy, 105, 1205–1222. https://doi.org/10.1016/j.biopha.2018.05.086. ; Myers, M. G., Leibel, R. L., Seeley, R. J., & Schwartz, M. W. (2010). Obesity and leptin resistance: Distinguishing cause from effect. Trends in Endocrinology and Metabolism, 21, 643–651. https://doi.org/10.1016/j.tem.2010.08.002. ; Nagashima, K., Nakai, S., Matsue, K., Konishi, M., Tanaka, M., & Kanosue, K. (2003). Effects of fasting on thermoregulatory processes and the daily oscillations in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284, R1486–R1493. https://doi.org/10.1152/ajpregu.00515.2002. ; Overton, J. M., & Williams, T. D. (2004). Behavioral and physiologic responses to caloric restriction in mice. Physiology & Behavior, 81, 749–754. https://doi.org/10.1016/j.physbeh.2004.04.025. ; Paxinos, G., & Watson, C. (1988). The rat BRAIN in stereotaxic coordinates (FOURTH EDITION CD‐ROM ed., Vol. 4). Academic Press. ; Pérez‐Cerezales, S., Ramos‐Ibeas, P., Rizos, D., Lonergan, P., Bermejo‐Alvarez, P., & Gutiérrez‐Adán, A. (2018). Early sex‐dependent differences in response to environmental stress. Reproduction, 155, R39–R51. https://doi.org/10.1530/REP-17-0466. ; Rezai‐Zadeh, K., Yu, S., Jiang, Y., Laque, A., Schwartzenburg, C., Morrison, C. D., Derbenev, A. V., Zsombok, A., & Münzberg, H. (2014). Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Molecular Metabolism, 3, 681–693. https://doi.org/10.1016/j.molmet.2014.07.008. ; Sawchenko, P. E. (1998). Toward a new neurobiology of energy balance, appetite, and obesity. The Journal of Comparative Neurology, 442, 435–441. ; Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P., & Baskin, D. G. (1996). Identification of targets of leptin action in rat hypothalamus. The Journal of Clinical Investigation, 96, 1101–1106. https://doi.org/10.1172/JCI118891. ; Shimomura, C., & Ohta, H. (1988). Behavioral abnormalities and seizure susceptibility in rat after neonatal anoxia. Brain & Development, 10, 160–163. https://doi.org/10.1016/S0387-7604(88)80020-2. ; Syed, S. A., & Nemeroff, C. B. (2017). Early life stress, mood, and anxiety disorders. Chronic Stress, 1, 247054701769446. https://doi.org/10.1177/2470547017694461. ; Takada, S. H., Motta‐Teixeira, L. C., Machado‐Nils, A. V., Lee, V. Y., Sampaio, C. A., Polli, R. S., Malheiros, J. M., Takase, L. F., Kihara, A. H., Covolan, L., Xavier, G. F., & Nogueira, M. I. (2016). Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior. Behavioural Brain Research, 296, 331–338. https://doi.org/10.1016/j.bbr.2015.08.039. ; Takada, S. H., Sampaio, C. A. G., Allemandi, W., Ito, P. H., Takase, L. F., & Nogueira, M. I. (2011). A modified rat model of neonatal anoxia: Development and evaluation by pulseoximetry, arterial gasometry and Fos immunoreactivity. Journal of Neuroscience Methods, 198, 62–69. https://doi.org/10.1016/j.jneumeth.2011.03.009. ; Tang, A. C., & Nakazawa, M. (2005). Neonatal novelty exposure ameliorates anoxia‐induced hyperactivity in the open field. Behavioural Brain Research, 163, 1–9. https://doi.org/10.1016/j.bbr.2005.03.025. ; van Swieten, M. M. H., Pandit, R., Adan, R. A. H., & van der Plasse, G. (2014). The neuroanatomical function of leptin in the hypothalamus. Journal of Chemical Neuroanatomy, 61, 207–220. https://doi.org/10.1016/j.jchemneu.2014.05.004. ; Vannucci, R. C. (2000). Hypoxic ischemic encephalopathy. American Journal of Perinatology, 17, 451–464. https://doi.org/10.1055/s-2000-9293. ; Vargas, J., Junco, M., Gomez, C., & Lajud, N. (2016). Early life stress increases metabolic risk, HPA axis reactivity, and depressive‐like behavior when combined with postweaning social isolation in rats. PLoS ONE, 11, e0162665. https://doi.org/10.1371/journal.pone.0162665. ; Vargas, V. E., Gurung, S., Grant, B., Hyatt, K., Singleton, K., Myers, S. M., Saunders, D., Njoku, C., Towner, R., & Myers, D. A. (2017). Gestational hypoxia disrupts the neonatal leptin surge and programs hyperphagia and obesity in male offspring in the Sprague‐Dawley rat. PLoS ONE, 12, e0185272. https://doi.org/10.1371/journal.pone.0185272. ; Viana Borges, J., Souza de Freitas, B., Antoniazzi, V., de Souza dos Santos, C., Vedovelli, K., Naziaseno Pires, V., Paludo, L., Martins de Lima, M. N., & Bromberg, E. (2019). Social isolation and social support at adulthood affect epigenetic mechanisms, brain‐derived neurotrophic factor levels and behavior of chronically stressed rats. Behavioural Brain Research, 366, 36–44. https://doi.org/10.1016/j.bbr.2019.03.025. ; Yager, J. Y., & Ashwal, S. (2009). Animal models of perinatal hypoxic‐ischemic brain damage. Pediatric Neurology, 40, 156–167. https://doi.org/10.1016/j.pediatrneurol.2008.10.025. ; Yam, K. Y., Naninck, E. F. G., Schmidt, M. V., Lucassen, P. J., & Korosi, A. (2015). Early‐life adversity programs emotional functions and the neuroendocrine stress system: The contribution of nutrition, metabolic hormones and epigenetic mechanisms. Stress, 18, 328–342. https://doi.org/10.3109/10253890.2015.1064890. ; Yamada, K., Ohki‐Hamazaki, H., & Wada, K. (2000). Differential effects of social isolation upon body weight, food consumption, and responsiveness to novel and social environment in bombesin receptor subtype‐3 (BRS‐3) deficient mice. Physiology & Behavior, 68, 555–561. https://doi.org/10.1016/S0031-9384(99)00214-0. ; Yan, F., Zhang, M., Meng, Y., Li, H., Yu, L., Fu, X., Tang, Y., & Jiang, C. (2016). Erythropoietin improves hypoxic‐ischemic encephalopathy in neonatal rats after short‐term anoxia by enhancing angiogenesis. Brain Research, 1651, 104–113. https://doi.org/10.1016/j.brainres.2016.09.024.
  • Grant Information: 2015/18415-8 Fundação de Amparo à Pesquisa do Estado de São Paulo; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Coordenadoria de Aperfeiçoamento de Pessoal de Nivel Superior
  • Contributed Indexing: Keywords: anoxia; arcuate nucleus; food intake; insulin; leptin; social isolation
  • Substance Nomenclature: 0 (Leptin) ; 0 (Blood Glucose) ; 0 (Insulin)
  • Entry Date(s): Date Created: 20240326 Date Completed: 20240604 Latest Revision: 20240604
  • Update Code: 20240604

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -