Zum Hauptinhalt springen

Comparative analysis of the spatial distribution of brain metastases across several primary cancers using machine learning and deep learning models.

Mahmoodifar, S ; Pangal, DJ ; et al.
In: Journal of neuro-oncology, Jg. 167 (2024-05-01), Heft 3, S. 501-508
Online academicJournal

Titel:
Comparative analysis of the spatial distribution of brain metastases across several primary cancers using machine learning and deep learning models.
Autor/in / Beteiligte Person: Mahmoodifar, S ; Pangal, DJ ; Neman, J ; Zada, G ; Mason, J ; Salhia, B ; Kaisman-Elbaz, T ; Peker, S ; Samanci, Y ; Hamel, A ; Mathieu, D ; Tripathi, M ; Sheehan, J ; Pikis, S ; Mantziaris, G ; Newton, PK
Link:
Zeitschrift: Journal of neuro-oncology, Jg. 167 (2024-05-01), Heft 3, S. 501-508
Veröffentlichung: 2005- : New York : Springer ; <i>Original Publication</i>: Boston : M. Nijhoff, 1983-, 2024
Medientyp: academicJournal
ISSN: 1573-7373 (electronic)
DOI: 10.1007/s11060-024-04630-5
Schlagwort:
  • Humans
  • Female
  • Male
  • Neoplasms pathology
  • Algorithms
  • Middle Aged
  • Brain Neoplasms secondary
  • Machine Learning
  • Deep Learning
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Comparative Study
  • Language: English
  • [J Neurooncol] 2024 May; Vol. 167 (3), pp. 501-508. <i>Date of Electronic Publication: </i>2024 Apr 02.
  • MeSH Terms: Brain Neoplasms* / secondary ; Machine Learning* ; Deep Learning* ; Humans ; Female ; Male ; Neoplasms / pathology ; Algorithms ; Middle Aged
  • References: Cardinal T, Pangal D, Strickland BA, Newton P, Mahmoodifar S, Mason J, Craig D, Simon T, Tew BY, Yu M et al (2022) Anatomical and topographical variations in the distribution of brain metastases based on primary cancer origin and molecular subtypes: a systematic review. Neuro-Oncol Adv 4(1):170. https://doi.org/10.1093/noajnl/vdab170. (PMID: 10.1093/noajnl/vdab170) ; In GK, Mason J, Lin S, Newton PK, Kuhn P, Nieva J (2017) Development of metastatic brain disease involves progression through lung metastases in egfr mutated non-small cell lung cancer. Converg Sci Phys Oncol 3(3):035002. https://doi.org/10.1088/2057-1739/aa7a8d. (PMID: 10.1088/2057-1739/aa7a8d) ; Newton PK, Mason J, Venkatappa N, Jochelson MS, Hurt B, Nieva J, Comen E, Norton L, Kuhn P (2015) Spatiotemporal progression of metastatic breast cancer: a markov chain model highlighting the role of early metastatic sites. NPJ Breast Cancer 1(1):1–9. https://doi.org/10.1038/npjbcancer.2015.18. (PMID: 10.1038/npjbcancer.2015.18) ; Newton PK, Mason J, Hurt B, Bethel K, Bazhenova L, Nieva J, Kuhn P (2014) Entropy, complexity and markov diagrams for random walk cancer models. Sci Rep 4(1):7558. https://doi.org/10.1038/srep07558. (PMID: 10.1038/srep07558255233574894412) ; Newton PK, Mason J, Bethel K, Bazhenova L, Nieva J, Norton L, Kuhn P (2013) Spreaders and sponges define metastasis in lung cancer: a markov chain monte carlo mathematical model. Can Res 73(9):2760–2769. https://doi.org/10.1158/0008-5472.CAN-12-4488. (PMID: 10.1158/0008-5472.CAN-12-4488) ; Newton PK, Mason J, Bethel K, Bazhenova LA, Nieva J, Kuhn P (2012) A stochastic markov chain model to describe lung cancer growth and metastasis. PLoS ONE 7(4):34637. https://doi.org/10.1371/journal.pone.0034637. (PMID: 10.1371/journal.pone.0034637) ; Schroeder T, Bittrich P, Kuhne J, Noebel C, Leischner H, Fiehler J, Schroeder J, Schoen G, Gellisen S (2020) Mapping distribution of brain metastases: does the primary tumor matter? J Neuro-Oncol 147:229–235. https://doi.org/10.1007/s11060-020-03419-6. (PMID: 10.1007/s11060-020-03419-6) ; Neman J, Franklin M, Madaj Z, Deshpande K, Triche TJ, Sadlik G, Carmichael JD, Chang E, Yu C, Strickland BA et al (2021) Use of predictive spatial modeling to reveal that primary cancers have distinct central nervous system topography patterns of brain metastasis. J Neurosurg 136(1):88–96. https://doi.org/10.3171/2021.1.JNS203536. (PMID: 10.3171/2021.1.JNS203536342715458824486) ; Mahmoodifar S, Pangal DJ, Cardinal T, Craig D, Simon T, Tew BY, Yang W, Chang E, Yu M, Neman J et al (2022) A quantitative characterization of the spatial distribution of brain metastases from breast cancer and respective molecular subtypes. J Neuro-Oncol 160(1):241–251. https://doi.org/10.1007/s11060-022-04147-9. (PMID: 10.1007/s11060-022-04147-9) ; Fidler IJ, Yano S, Zhang R-d, Fujimaki T, Bucana CD (2002) The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 3(1):53–57. https://doi.org/10.1016/s1470-2045(01)00622-2. (PMID: 10.1016/s1470-2045(01)00622-211905606) ; Fidler IJ (2011) The role of the organ microenvironment in brain metastasis. In: Seminars in cancer biology, vol 21. Elsevier, pp 107–112. https://doi.org/10.1016/j.semcancer.2010.12.009. ; Kirby M (2000) Geometric data analysis: an empirical approach to dimensionality reduction and the study of patterns. John Wiley & Sons Inc, New York. ; Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. ; Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357. https://doi.org/10.1613/jair.953. (PMID: 10.1613/jair.953) ; Lemaître G, Nogueira F, Aridas CK (2017) Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res 18(1):559–563. ; Breiman L (2001) Random forests. Mach Learn 45:5–32. (PMID: 10.1023/A:1010933404324) ; Gupta P, Garg S (2020) Breast cancer prediction using varying parameters of machine learning models. Procedia Comput Sci 171:593–601. https://doi.org/10.1016/j.procs.2020.04.064. (PMID: 10.1016/j.procs.2020.04.064) ; Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang C-H, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP et al (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci 98(26):15149–15154. https://doi.org/10.1073/pnas.211566398. ; He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778. https://doi.org/10.1109/CVPR.2016.90. ; Arik SÖ, Pfister T (2021) Tabnet: attentive interpretable tabular learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 6679–6687. https://doi.org/10.1609/aaai.v35i8.16826. ; Quattrocchi CC, Errante Y, Gaudino C, Mallio CA, Giona A, Santini D, Tonini G, Zobel BB (2012) Spatial brain distribution of intra-axial metastatic lesions in breast and lung cancer patients. J Neuro-Oncol 110:79–87. https://doi.org/10.1007/s11060-012-0937-x.
  • Grant Information: USC Norris Comprehensive Cancer Center Pilot Award United States NH NIH HHS; USC Norris Comprehensive Cancer Center Pilot Award United States NH NIH HHS
  • Contributed Indexing: Keywords: Brain metastases; Deep learning models; Pan cancer analysis; Principal components
  • Entry Date(s): Date Created: 20240402 Date Completed: 20240515 Latest Revision: 20240515
  • Update Code: 20240515

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -