Zum Hauptinhalt springen

Subcellular dynamics of ethylene signaling drive plant plasticity to growth and stress: Spatiotemporal control of ethylene signaling in Arabidopsis.

Chien, YC ; Yoon, GM
In: BioEssays : news and reviews in molecular, cellular and developmental biology, Jg. 46 (2024-06-01), Heft 6, S. e2400043
Online academicJournal

Titel:
Subcellular dynamics of ethylene signaling drive plant plasticity to growth and stress: Spatiotemporal control of ethylene signaling in Arabidopsis.
Autor/in / Beteiligte Person: Chien, YC ; Yoon, GM
Link:
Zeitschrift: BioEssays : news and reviews in molecular, cellular and developmental biology, Jg. 46 (2024-06-01), Heft 6, S. e2400043
Veröffentlichung: <2005->: Hoboken, N.J. : Wiley ; <i>Original Publication</i>: Cambridge, UK : Published for the ICSU Press by Cambridge University Press, c1984-, 2024
Medientyp: academicJournal
ISSN: 1521-1878 (electronic)
DOI: 10.1002/bies.202400043
Schlagwort:
  • Gene Expression Regulation, Plant
  • Plant Growth Regulators metabolism
  • Endoplasmic Reticulum metabolism
  • Receptors, Cell Surface metabolism
  • Protein Kinases
  • Ethylenes metabolism
  • Arabidopsis metabolism
  • Arabidopsis growth & development
  • Arabidopsis genetics
  • Signal Transduction
  • Stress, Physiological
  • Arabidopsis Proteins metabolism
  • Arabidopsis Proteins genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Bioessays] 2024 Jun; Vol. 46 (6), pp. e2400043. <i>Date of Electronic Publication: </i>2024 Apr 03.
  • MeSH Terms: Ethylenes* / metabolism ; Arabidopsis* / metabolism ; Arabidopsis* / growth & development ; Arabidopsis* / genetics ; Signal Transduction* ; Stress, Physiological* ; Arabidopsis Proteins* / metabolism ; Arabidopsis Proteins* / genetics ; Gene Expression Regulation, Plant ; Plant Growth Regulators / metabolism ; Endoplasmic Reticulum / metabolism ; Receptors, Cell Surface / metabolism ; Protein Kinases
  • References: Nair, A., Chauhan, P., Saha, B., & Kubatzky, K. F. (2019). Conceptual evolution of cell signaling. International Journal of Molecular Sciences, 20(13), 3292. ; Garcia, E., & Ismail, S. (2020). Spatiotemporal regulation of signaling: Focus on T cell activation and the immunological synapse. International Journal of Molecular Sciences, 21(9), 3283. ; Tong, X., Tang, R., Xu, J., Wang, W., Zhao, Y., Yu, X., & Shi, S. (2022). Liquid–liquid phase separation in tumor biology. Signal Transduction and Targeted Therapy, 7, 221. ; Bui, N. H. B., Napoli, M., Davis, A. J., Abbas, H. A., Rajapakshe, K., Coarfa, C., & Flores, E. R. (2020). Spatiotemporal regulation of ΔNp63 by TGFβ‐regulated miRNAs is essential for cancer metastasis. Cancer Research, 80, 2833–2847. ; Nam, H., Han, S., Lee, S., Nam, H., Lim, H., Lee, G., Cho, H. S., Dang, T. V. T., Choi, S., Lee, M. M., & Hwang, I. (2023). CPR5‐mediated nucleo‐cytoplasmic localization of IAA12 and IAA19 controls lateral root development during abiotic stress. Proceedings of the National Academy of Sciences of the United States of America, 120, e2209781120. ; Park, H. J., Gámez‐Arjona, F. M., Lindahl, M., Aman, R., Villalta, I., Cha, J. Y., Carranco, R., Lim, C. J., García, E., Bressan, R. A., Lee, S. Y., Valverde, F., Sánchez‐Rodríguez, C., Pardo, J. M., Kim, W. Y., Quintero, F. J., & Yun, D. J. (2023). S‐acylated and nucleus‐localized SALT OVERLY SENSITIVE3/CALCINEURIN B‐LIKE4 stabilizes GIGANTEA to regulate Arabidopsis flowering time under salt stress. The Plant Cell, 35, 298–317. ; Binder, B. M. (2020). Ethylene signaling in plants. Journal of Biological Chemistry, 295, 7710–7725. ; Dar, R. A., Nisar, S., & Tahir, I. (2021). Ethylene: A key player in ethylene sensitive flower senescence: A review. Scientia Horticulturae, 290, 110491. ; Chen, H., Bullock D. A., Jr., Alonso, J. M., & Stepanova, A. N. (2021). To fight or to grow: The balancing role of ethylene in plant abiotic stress responses. Plants (Basel), 11(1), 33. ; Hua, J., & Meyerowitz, E. M. (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell, 94, 261–271. ; Zheng, F., Cui, X., Rivarola, M., Gao, T., Chang, C., & Dong, C. H. (2017). Molecular association of Arabidopsis RTH with its homolog RTE1 in regulating ethylene signaling. Journal of Experimental Botany, 68, 2821–2832. ; Resnick, J. S., Wen, C. K., Shockey, J. A., & Chang, C. (2006). REVERSION‐TO‐ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 103, 7917–7922. ; Ju, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., Garrett, W. M., Kessenbrock, M., Groth, G., Tucker, M. L., Cooper, B., Kieber, J. J., & Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 109, 19486–19491. ; Qiao, H., Shen, Z., Huang, S. S., Schmitz, R. J., Urich, M. A., Briggs, S. P., & Ecker, J. R. (2012). Processing and subcellular trafficking of ER‐tethered EIN2 control response to ethylene gas. Science (New York, NY), 338, 390–393. ; Wen, X., Zhang, C., Ji, Y., Zhao, Q., He, W., An, F., Jiang, L., & Guo, H. (2012). Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Research, 22, 1613–1616. ; Zhao, H., Ma, B., Duan, K. X., Li, X. K., Lu, X., Yin, C. C., Tao, J. J., Wei, W., Zhang, W. K., Xin, P. Y., Man Lam, S., Chu, J. F., Shui, G. H., Chen, S. Y., & Zhang, J. S. (2020). The GDSL lipase MHZ11 modulates ethylene signaling in rice roots. Plant Cell, 32, 1626–1643. ; Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., Li, M., An, F., & Guo, H. (2015). EIN2‐directed translational regulation of ethylene signaling in Arabidopsis. Cell, 163, 670–683. ; Merchante, C., Brumos, J., Yun, J., Hu, Q., Spencer, K. R., Enríquez, P., Binder, B. M., Heber, S., Stepanova, A. N., & Alonso, J. M. (2015). Gene‐specific translation regulation mediated by the hormone‐signaling molecule EIN2. Cell, 163, 684–697. ; Huang, Y. H., Han, J. Q., Ma, B., Cao, W. Q., Li, X. K., Xiong, Q., Zhao, H., Zhao, R., Zhang, X., Zhou, Y., Wei, W., Tao, J. J., Zhang, W. K., Qian, W., Chen, S. Y., Yang, C., Yin, C. C., & Zhang, J. S. (2023). A translational regulator MHZ9 modulates ethylene signaling in rice. Nature Communications, 14, 4674. ; Park, H. L., Seo, D. H., Lee, H. Y., Bakshi, A., Park, C., Chien, Y. C., Kieber, J. J., Binder, B. M., & Yoon, G. M. (2023). Ethylene‐triggered subcellular trafficking of CTR1 enhances the response to ethylene gas. Nature Communications, 14, 365. ; Gallie, D. R. (2015). Ethylene receptors in plants ‐ why so much complexity? F1000Prime Rep, 7, 39. ; Hua, J., Sakai, H., Nourizadeh, S., Chen, Q. G., Bleecker, A. B., Ecker, J. R., & Meyerowitz, E. M. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell, 10, 1321–1332. ; Chang, C., Kwok, S. F., Bleecker, A. B., & Meyerowitz, E. M. (1993). Arabidopsis ethylene‐response gene ETR1: similarity of product to two‐component regulators. Science (New York, NY), 262, 539–544. ; Hua, J., Chang, C., Sun, Q., & Meyerowitz, E. M. (1995). Ethylene insensitivity conferred by Arabidopsis ERS gene. Science (New York, NY), 269, 1712–1714. ; Gamble, R. L., Coonfield, M. L., & Schaller, G. E. (1998). Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 95, 7825–7829. ; Sakai, H., Hua, J., Chen, Q. G., Chang, C., Medrano, L. J., Bleecker, A. B., & Meyerowitz, E. M. (1998). ETR2 is an ETR1‐like gene involved in ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 95, 5812–5817. ; Moussatche, P., & Klee, H. J. (2004). Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. Journal of Biological Chemistry, 279, 48734–48741. ; Chen, T., Liu, J., Lei, G., Liu, Y. F., Li, Z. G., Tao, J. J., Hao, Y. J., Cao, Y. R., Lin, Q., Zhang, W. K., Ma, B., Chen, S. Y., & Zhang, J. S. (2009). Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant & Cell Physiology, 50, 1636–1650. ; Wuriyanghan, H., Zhang, B., Cao, W. H., Ma, B., Lei, G., Liu, Y. F., Wei, W., Wu, H. J., Chen, L. J., Chen, H. W., Cao, Y. R., He, S. J., Zhang, W. K., Wang, X. J., Chen, S. Y., & Zhang, J. S. (2009). The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell, 21, 1473–1494. ; Zhao, H., Duan, K.‐X., Ma, B., Yin, C.‐C., Hu, Y., Tao, J. J., Huang, Y. H., Cao, W. Q., Chen, H., Yang, C., Zhang, Z. G., He, S. J., Zhang, W. K., Wan, X. Y., Lu, T. G., Chen, S. Y., & Zhang, J. S. (2020). Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice. Nature Communications, 11, 518. ; Gao, Z., Chen, Y. F., Randlett, M. D., Zhao, X. C., Findell, J. L., Kieber, J. J., & Schaller, G. E. (2003). Localization of the Raf‐like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. Journal of Biological Chemistry, 278, 34725–34732. ; Clark, K. L., Larsen, P. B., Wang, X., & Chang, C. (1998). Association of the Arabidopsis CTR1 Raf‐like kinase with the ETR1 and ERS ethylene receptors. Proceedings of the National Academy of Sciences of the United States of America, 95, 5401–5406. ; Raval, P. K., Martin, W. F., & Gould, S. B. (2023). Mitochondrial evolution: Gene shuffling, endosymbiosis, and signaling. Science Advances, 9, eadj4493. ; Padilla‐Vaca, F., de la Mora, J., García‐Contreras, R., Ramírez‐Prado, J. H., Alva‐Murillo, N., Fonseca‐Yepez, S., Serna‐Gutiérrez, I., Moreno‐Galván, C. L., Montufar‐Rodríguez, J. M., Vicente‐Gómez, M., Rangel‐Serrano, Á., Vargas‐Maya, N. I., & Franco, B. (2023). Two‐component system sensor kinases from asgardian archaea may be witnesses to eukaryotic cell evolution. Molecules (Basel, Switzerland), 28(13), 5042. ; Pattyn, J., Vaughan‐Hirsch, J., & Van de Poel, B. (2021). The regulation of ethylene biosynthesis: a complex multilevel control circuitry. New Phytologist, 229, 770–782. ; Shi, H., Liu, R., Xue, C., Shen, X., Wei, N., Deng, X. W., & Zhong, S. (2016). Seedlings transduce the depth and mechanical pressure of covering soil using COP1 and ethylene to regulate EBF1/EBF2 for soil emergence. Current Biology, 26, 139–149. ; Binder, B. M., O'Malley, R. C., Wang, W., Moore, J. M., Parks, B. M., Spalding, E. P., & Bleecker, A. B. (2004). Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiology, 136, 2913–2920. ; Oku, Y., & Huganir, R. L. (2013). AGAP3 and Arf6 regulate trafficking of AMPA receptors and synaptic plasticity. Journal of Neuroscience, 33, 12586–12598. ; Fu, L., Liu, Y., Qin, G., Wu, P., Zi, H., Xu, Z., Zhao, X., Wang, Y., Li, Y., Yang, S., Peng, C., Wong, C. C. L., Yoo, S. D., Zuo, Z., Liu, R., Cho, Y. H., & Xiong, Y. (2021). The TOR‐EIN2 axis mediates nuclear signalling to modulate plant growth. Nature, 591, 288–292. ; Zhang, F., Wang, L., Qi, B., Zhao, B., Ko, E. E., Riggan, N. D., Chin, K., & Qiao, H. (2017). EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proceedings of the National Academy of Sciences of the United States of America, 114, 10274–10279. ; Griffin, J. H. C., Prado, K., Sutton, P., & Toledo‐Ortiz, G. (2020). Coordinating light responses between the nucleus and the chloroplast, a role for plant cryptochromes and phytochromes. Physiologia Plantarum, 169, 515–528. ; Shi, H., Shen, X., Liu, R., Xue, C., Wei, N., Deng, X. W., & Zhong, S. (2016). The red light receptor phytochrome B directly enhances substrate‐E3 ligase interactions to attenuate ethylene responses. Developmental Cell, 39, 597–610. ; Nagy, F., & Schäfer, E. (1999). Phytochromes, pif3 and light signalling go nuclear. Trends in Plant Science, 4, 125–126. ; Ni, W., Xu, S.‐L., González‐Grandío, E., Chalkley, R. J., Huhmer, A. F. R., Burlingame, A. L., Wang, Z. Y., & Quail, P. H. (2017). PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nature Communications, 8, 15236. ; Powers, S. K., Holehouse, A. S., Korasick, D. A., Schreiber, K. H., Clark, N. M., Jing, H., Emenecker, R., Han, S., Tycksen, E., Hwang, I., Sozzani, R., Jez, J. M., Pappu, R. V., & Strader, L. C. (2019). Nucleo‐cytoplasmic partitioning of ARF proteins controls auxin responses in arabidopsis thaliana. Molecular Cell, 76, 177–190.e5. ; Podolec, R., & Ulm, R. (2018). Photoreceptor‐mediated regulation of the COP1/SPA E3 ubiquitin ligase. Current Opinion in Plant Biology, 45, 18–25. ; Hao, D., Jin, L., Wen, X., Yu, F., Xie, Q., & Guo, H. (2021). The RING E3 ligase SDIR1 destabilizes EBF1/EBF2 and modulates the ethylene response to ambient temperature fluctuations in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 118(6), e2024592118. ; Solis‐Miranda, J., Chodasiewicz, M., Skirycz, A., Fernie, A. R., Moschou, P. N., Bozhkov, P. V., & Gutierrez‐Beltran, E. (2023). Stress‐related biomolecular condensates in plants. Plant Cell, 35, 3187–3204. ; Chien, Y. C., Reyes, A., Park, H. L., Xu, S. L., & Yoon, G. M. (2024). Uncovering the proximal proteome of CTR1 through TurboID‐mediated proximity labeling. Proteomics, 24(6), e2300212. ; Li, Q., Fu, H., Yu, X., Wen, X., Guo, H., Guo, Y., & Li, J. (2024). The SALT OVERLY SENSITIVE 2‐CONSTITUTIVE TRIPLE RESPONSE1 module coordinates plant growth and salt tolerance in Arabidopsis. Journal of Experimental Botany, 75, 391–404. ; Chalabi Hagkarim, N., & Grand, R. J. (2020). The regulatory properties of the Ccr4‐not complex. Cells, 9(11), 2379. ; Jiang, H., Wolgast, M., Beebe, L. M., & Reese, J. C. (2019). Ccr4‐Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII. Genes & Development, 33, 705–717. ; Ito‐Kureha, T., Miyao, T., Nishijima, S., Suzuki, T., Koizumi, S. I., Villar‐Briones, A., Takahashi, A., Akiyama, N., Morita, M., Naguro, I., Ishikawa, H., Ichijo, H., Akiyama, T., & Yamamoto, T. (2020). The CCR4–NOT deadenylase complex safeguards thymic positive selection by down‐regulating aberrant pro‐apoptotic gene expression. Nature Communications, 11, 6169. ; Ford, H. C., Allen, W. J., Pereira, G. C., Liu, X., Dillingham, M. S., & Collinson, I. (2022). Towards a molecular mechanism underlying mitochondrial protein import through the TOM and TIM23 complexes. Elife, 11, e75426. ; Gabay‐Maskit, S., Cruz‐Zaragoza, L. D., Shai, N., Eisenstein, M., Bibi, C., Cohen, N., Hansen, T., Yifrach, E., Harpaz, N., Belostotsky, R., Schliebs, W., Schuldiner, M., Erdmann, R., & Zalckvar, E. (2020). A piggybacking mechanism enables peroxisomal localization of the glyoxylate cycle enzyme Mdh2 in yeast. Journal of Cell Science, 133(24), jcs244376. ; Yuryev, A., Ono, M., Goff, S. A., Macaluso, F., & Wennogle, L. P. (2000). Isoform‐specific localization of A‐RAF in mitochondria. Molecular and Cellular Biology, 20, 4870–4878. ; Wang, X., & Auwerx, J. (2017). Systems Phytohormone Responses to Mitochondrial Proteotoxic Stress. Molecular Cell, 68, 540–551.e5. ; Jurdak, R., Launay‐Avon, A., Paysant‐Le Roux, C., & Bailly, C. (2021). Retrograde signalling from the mitochondria to the nucleus translates the positive effect of ethylene on dormancy breaking of Arabidopsis thaliana seeds. New Phytologist, 229, 2192–2205. ; Zanini, G., Selleri, V., Malerba, M., Solodka, K., Sinigaglia, G., Nasi, M., Mattioli, A. V., & Pinti, M. (2023). The Role of Lonp1 on Mitochondrial Functions during Cardiovascular and Muscular Diseases. Antioxidants (Basel), 12(3), 598. ; Szczepanowska, K., & Trifunovic, A. (2022). Mitochondrial matrix proteases: quality control and beyond. Febs Journal, 289, 7128–7146. ; Sullivan, S., Waksman, T., Paliogianni, D., Henderson, L., Lütkemeyer, M., Suetsugu, N., & Christie, J. M. (2021). Regulation of plant phototropic growth by NPH3/RPT2‐like substrate phosphorylation and 14‐3‐3 binding. Nature Communications, 12, 6129. ; Reuter, L., Schmidt, T., Manishankar, P., Throm, C., Keicher, J., Bock, A., Droste‐Borel, I., & Oecking, C. (2021). Light‐triggered and phosphorylation‐dependent 14‐3‐3 association with NON‐PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism. Nature Communications, 12, 6128. ; Christie, J. M., Suetsugu, N., Sullivan, S., & Wada, M. (2018). Shining Light on the Function of NPH3/RPT2‐Like Proteins in Phototropin Signaling. Plant Physiology, 176, 1015–1024. ; Zhao, X., Zhao, Q., Xu, C., Wang, J., Zhu, J., Shang, B., & Zhang, X. (2018). Phot2‐regulated relocation of NPH3 mediates phototropic response to high‐intensity blue light in Arabidopsis thaliana. Journal of Integrative Plant Biology, 60, 562–577. ; Chen, R., Binder, B. M., Garrett, W. M., Tucker, M. L., Chang, C., & Cooper, B. (2011). Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Molecular bioSystems, 7, 2637–2650. ; Inoue, S. I., & Kinoshita, T. (2017). Blue Light Regulation of Stomatal Opening and the Plasma Membrane H(+)‐ATPase. Plant Physiology, 174, 531–538. ; Hosotani, S., Yamauchi, S., Kobayashi, H., Fuji, S., Koya, S., Shimazaki, K. I., & Takemiya, A. (2021). A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light. Plant Cell, 33, 1813–1827. ; Hasan, M. M., Liu, X. D., Yao, G. Q., Liu, J., & Fang, X. W. (2024). Ethylene‐mediated stomatal responses to dehydration and rehydration in seed plants. Journal of Experimental Botany, erae060. ; Song, Z., Zhao, L., Ma, W., Peng, Z., Shi, J., Pan, F., Gao, Y., Sui, X., Rengel, Z., Chen, Q., & Wang, B. (2023). Ethylene inhibits ABA‐induced stomatal closure via regulating NtMYB184‐mediated flavonol biosynthesis in tobacco. Journal of Experimental Botany, 74, 6735–6748. ; Wang, H. (2005). Signaling mechanisms of higher plant photoreceptors: a structure‐function perspective. Current Topics in Developmental Biology, 68, 227–261. ; Kong, Y., & Zheng, Y. (2023). Magic Blue Light: A Versatile Mediator of Plant Elongation. Plants (Basel), 13(1), 115. ; Seo, D. H., & Yoon, G. M. (2019). Light‐induced stabilization of ACS contributes to hypocotyl elongation during the dark‐to‐light transition in Arabidopsis seedlings. Plant Journal, 98, 898–911. ; Yu, Y., & Huang, R. (2017). Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis. Frontiers in plant science, 8, 57. ; Ali, A., Petrov, V., Yun, D. J., & Gechev, T. (2023). Revisiting plant salt tolerance: novel components of the SOS pathway. Trends in Plant Science, 28, 1060–1069. ; He, W., Truong, H. A., Zhang, L., Cao, M., Arakawa, N., Xiao, Y., Zhong, K., Hou, Y., & Busch, W. (2024). Identification of mebendazole as an ethylene signaling activator reveals a role of ethylene signaling in the regulation of lateral root angles. Cell Reports, 43, 113763.
  • Grant Information: MCB-1817286 National Science Foundation; IOS-2245525 National Science Foundation
  • Contributed Indexing: Keywords: Arabidopsis; CTR1; RAF kinase; ethylene; hormone; nuclear trafficking
  • Substance Nomenclature: 0 (Ethylenes) ; 91GW059KN7 (ethylene) ; 0 (Arabidopsis Proteins) ; EC 2.7.1.- (CTR1 protein, Arabidopsis) ; 0 (Plant Growth Regulators) ; 0 (Receptors, Cell Surface) ; EC 2.7.- (Protein Kinases)
  • Entry Date(s): Date Created: 20240404 Date Completed: 20240527 Latest Revision: 20240531
  • Update Code: 20240531

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -