Zum Hauptinhalt springen

FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy.

Chan, JD ; Scheffler, CM ; et al.
In: Nature, Jg. 629 (2024-05-01), Heft 8010, S. 201-210
academicJournal

Titel:
FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy.
Autor/in / Beteiligte Person: Chan, JD ; Scheffler, CM ; Munoz, I ; Sek, K ; Lee, JN ; Huang, YK ; Yap, KM ; Saw, NYL ; Li, J ; Chen, AXY ; Chan, CW ; Derrick, EB ; Todd, KL ; Tong, J ; Dunbar, PA ; Hoang, TX ; de Menezes MN ; Petley, EV ; Kim, JS ; Nguyen, D ; Leung, PSK ; So, J ; Deguit, C ; Zhu, J ; House, IG ; Kats, LM ; Scott, AM ; Solomon, BJ ; Harrison, SJ ; Oliaro, J ; Parish, IA ; Quinn, KM ; Neeson, PJ ; Slaney, CY ; Lai, J ; Beavis, PA ; Darcy, PK
Zeitschrift: Nature, Jg. 629 (2024-05-01), Heft 8010, S. 201-210
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2024
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-024-07242-1
Schlagwort:
  • Humans
  • Mice
  • Cell Line, Tumor
  • Mitochondria metabolism
  • Phenotype
  • Tumor Microenvironment immunology
  • Forkhead Box Protein O1 metabolism
  • Forkhead Box Protein O1 genetics
  • Immunotherapy, Adoptive
  • Receptors, Chimeric Antigen immunology
  • Receptors, Chimeric Antigen metabolism
  • T-Lymphocytes immunology
  • T-Lymphocytes metabolism
  • T-Lymphocytes cytology
  • Stem Cells cytology
  • Stem Cells immunology
  • Stem Cells metabolism
  • Neoplasms immunology
  • Neoplasms pathology
  • Neoplasms therapy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
  • Language: English
  • [Nature] 2024 May; Vol. 629 (8010), pp. 201-210. <i>Date of Electronic Publication: </i>2024 Apr 10.
  • MeSH Terms: Forkhead Box Protein O1* / metabolism ; Forkhead Box Protein O1* / genetics ; Immunotherapy, Adoptive* ; Receptors, Chimeric Antigen* / immunology ; Receptors, Chimeric Antigen* / metabolism ; T-Lymphocytes* / immunology ; T-Lymphocytes* / metabolism ; T-Lymphocytes* / cytology ; Stem Cells* / cytology ; Stem Cells* / immunology ; Stem Cells* / metabolism ; Neoplasms* / immunology ; Neoplasms* / pathology ; Neoplasms* / therapy ; Humans ; Mice ; Cell Line, Tumor ; Mitochondria / metabolism ; Phenotype ; Tumor Microenvironment / immunology
  • References: Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014). (PMID: 25317870426753110.1056/NEJMoa1407222) ; Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011). (PMID: 21832238339309610.1126/scitranslmed.3002842) ; Rodriguez-Otero, P. et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N. Engl. J. Med. 388, 1002–1014 (2023). (PMID: 3676285110.1056/NEJMoa2213614) ; San-Miguel, J. et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N. Engl. J. Med. 389, 335–347 (2023). (PMID: 3727251210.1056/NEJMoa2303379) ; Mardiana, S., Solomon, B. J., Darcy, P. K. & Beavis, P. A. Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression. Sci. Transl. Med. 11, eaaw2293 (2019). (PMID: 3116792510.1126/scitranslmed.aaw2293) ; Chan, J. D. et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 21, 769–784 (2021). (PMID: 3387987310.1038/s41577-021-00539-6) ; van Bruggen, J. A. C. et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8 + T cells and impede CAR T-cell efficacy. Blood 134, 44–58 (2019). (PMID: 31076448702237510.1182/blood.2018885863) ; Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018). (PMID: 29713085611761310.1038/s41591-018-0010-1) ; Blank, C. U. et al. Defining T cell exhaustion. Nat. Rev. Immunol. 19, 665–674 (2019). (PMID: 31570879728644110.1038/s41577-019-0221-9) ; Giraldo, N. A. et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res. 23, 4416–4428 (2017). (PMID: 2821336610.1158/1078-0432.CCR-16-2848) ; Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2019). (PMID: 10.1016/j.cell.2018.10.038) ; Giuffrida, L. et al. IL-15 preconditioning augments CAR T cell responses to checkpoint blockade for improved treatment of solid tumors. Mol. Ther. 28, 2379–2393 (2020). (PMID: 32735774764766710.1016/j.ymthe.2020.07.018) ; Klebanoff, C. A. et al. Central memory self/tumor-reactive CD8 + T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl Acad. Sci. USA 102, 9571–9576 (2005). (PMID: 15980149117226410.1073/pnas.0503726102) ; Siddiqui, I. et al. Intratumoral Tcf1 + PD-1 + CD8 + T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e110 (2019). (PMID: 3063523710.1016/j.immuni.2018.12.021) ; Guo, Y. et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin. Cancer Res. 24, 1277–1286 (2018). (PMID: 2913834010.1158/1078-0432.CCR-17-0432) ; Soriano-Baguet, L. & Brenner, D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol. 44, 231–244 (2023). (PMID: 3677433010.1016/j.it.2023.01.002) ; Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021). (PMID: 33795428804910310.1126/science.aba1786) ; Hirabayashi, K. et al. Dual-targeting CAR-T cells with optimal co-stimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors. Nat. Cancer 2, 904–918 (2021). (PMID: 34746799857056910.1038/s43018-021-00244-2) ; Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016). (PMID: 27849617513775810.1073/pnas.1610544113) ; Kagoya, Y. et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J. Clin. Invest. 126, 3479–3494 (2016). (PMID: 27548527500494610.1172/JCI86437) ; Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021). (PMID: 34282330831910910.1038/s41590-021-00964-8) ; Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019). (PMID: 31802004694432910.1038/s41586-019-1805-z) ; Alizadeh, D. et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 7, 759–772 (2019). (PMID: 30890531668756110.1158/2326-6066.CIR-18-0466) ; Tejera, M. M., Kim, E. H., Sullivan, J. A., Plisch, E. H. & Suresh, M. FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory. J. Immunol. 191, 187–199 (2013). (PMID: 2373388210.4049/jimmunol.1300331) ; Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009). (PMID: 19136962285647110.1038/ni.1689) ; Chen, Z. et al. In vivo CD8 + T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184, 1262–1280.e1222 (2021). (PMID: 33636129805435110.1016/j.cell.2021.02.019) ; Yang, C. Y. et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8 + T cell subsets. Nat. Immunol. 12, 1221–1229 (2011). (PMID: 2205728910.1038/ni.2158) ; Utzschneider, D. T. et al. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1. Cell Rep. 22, 3454–3467 (2018). (PMID: 29590615594218410.1016/j.celrep.2018.03.020) ; Klotz, L. O. et al. Redox regulation of FoxO transcription factors. Redox Biol. 6, 51–72 (2015). (PMID: 26184557451162310.1016/j.redox.2015.06.019) ; Beavis, P. A. et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Invest. 127, 929–941 (2017). (PMID: 28165340533071810.1172/JCI89455) ; Dong, E. et al. IFN-γ surmounts PD-L1/PD1 inhibition to CAR-T cell therapy by upregulating ICAM-1 on tumor cells. Signal Transduct. Target. Ther. 6, 20 (2021). (PMID: 33454722781152910.1038/s41392-020-00357-7) ; Chmielewski, M., Kopecky, C., Hombach, A. A. & Abken, H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 71, 5697–5706 (2011). (PMID: 2174277210.1158/0008-5472.CAN-11-0103) ; Larson, R. C. et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 604, 563–570 (2022). (PMID: 3541868710.1038/s41586-022-04585-5) ; Mardiana, S. et al. A multifunctional role for adjuvant anti-4-1BB therapy in augmenting antitumor response by chimeric antigen receptor T cells. Cancer Res. 77, 1296–1309 (2017). (PMID: 2808240110.1158/0008-5472.CAN-16-1831) ; Kantari-Mimoun, C. et al. CAR T-cell entry into tumor islets is a two-step process dependent on IFNγ and ICAM-1. Cancer Immunol. Res. 9, 1425–1438 (2021). (PMID: 3468648910.1158/2326-6066.CIR-20-0837) ; Monteiro, L. B., Davanzo, G. G., de Aguiar, C. F. & Moraes-Vieira, P. M. M. Using flow cytometry for mitochondrial assays. MethodsX 7, 100938 (2020). (PMID: 32551241728976010.1016/j.mex.2020.100938) ; Jang, K. J. et al. Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat. Commun. 6, 6750 (2015). (PMID: 2585752310.1038/ncomms7750) ; Rad, S. M. A., Poudel, A., Tan, G. M. Y. & McLellan, A. D. Promoter choice: Who should drive the CAR in T cells? PLoS ONE 15, e0232915 (2020). (PMID: 10.1371/journal.pone.0232915) ; Wherry, E. J. et al. Molecular signature of CD8 + T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007). (PMID: 1795000310.1016/j.immuni.2007.09.006) ; Shan, Q. et al. Tcf1–CTCF cooperativity shapes genomic architecture to promote CD8 + T cell homeostasis. Nat. Immunol. 23, 1222–1235 (2022). (PMID: 35882936957996410.1038/s41590-022-01263-6) ; Delpoux, A. et al. FOXO1 constrains activation and regulates senescence in CD8 T cells. Cell Rep. 34, 108674 (2021). (PMID: 3350341310.1016/j.celrep.2020.108674) ; Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4 + CAR T cells. Nature 602, 503–509 (2022). (PMID: 35110735916691610.1038/s41586-021-04390-6) ; Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, e95103 (2017). (PMID: 29212954575230410.1172/jci.insight.95103) ; Kousteni, S. FoxO1, the transcriptional chief of staff of energy metabolism. Bone 50, 437–443 (2012). (PMID: 2181624410.1016/j.bone.2011.06.034) ; Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8 + T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066.e4025 (2022). (PMID: 3620862310.1016/j.cell.2022.09.020) ; Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020). (PMID: 3189666010.1126/science.aay5967) ; Piechocki, M. P., Ho, Y. S., Pilon, S. & Wei, W. Z. Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. J. Immunol. 171, 5787–5794 (2003). (PMID: 1463408710.4049/jimmunol.171.11.5787) ; Darcy, P. K. et al. Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL. J. Immunol. 164, 3705–3712 (2000). (PMID: 1072572910.4049/jimmunol.164.7.3705) ; DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532 (2012). (PMID: 22539670335684710.1093/bioinformatics/bts196) ; Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018). (PMID: 2915595010.1093/nar/gkx1098) ; Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). (PMID: 1991030810.1093/bioinformatics/btp616) ; McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012). (PMID: 22287627337888210.1093/nar/gks042) ; Korotkevich, G., Sukhov, V. & Sergushichev, A. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2019). ; Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 16199517123989610.1073/pnas.0506580102) ; Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011). (PMID: 21546393310619810.1093/bioinformatics/btr260) ; Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015). (PMID: 26771021470796910.1016/j.cels.2015.12.004) ; Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000). (PMID: 1059217310240910.1093/nar/28.1.27) ; Pont, F., Tosolini, M. & Fournie, J. J. Single-cell signature explorer for comprehensive visualization of single cell signatures across scRNA-seq datasets. Nucleic Acids Res. 47, e133 (2019). (PMID: 31294801686834610.1093/nar/gkz601) ; Gaspar, J. M. NGmerge: merging paired-end reads via novel empirically-derived models of sequencing errors. BMC Bioinformatics 19, 536 (2018). (PMID: 30572828630240510.1186/s12859-018-2579-2) ; Pohl, A. & Beato, M. bwtool: a tool for bigWig files. Bioinformatics 30, 1618–1619 (2014). (PMID: 24489365402903110.1093/bioinformatics/btu056) ; Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017). (PMID: 28825706562314610.1038/nmeth.4401) ; Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50, D165–D173 (2022). (PMID: 3485090710.1093/nar/gkab1113)
  • Substance Nomenclature: 0 (Forkhead Box Protein O1) ; 0 (FOXO1 protein, human) ; 0 (Receptors, Chimeric Antigen)
  • Entry Date(s): Date Created: 20240410 Date Completed: 20240501 Latest Revision: 20240509
  • Update Code: 20240510
  • PubMed Central ID: PMC11062918

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -