Zum Hauptinhalt springen

Impact of long-term mining activity on groundwater dynamics in a mining district in Xinjiang coal Mine Base, Northwest China: insight from geochemical fingerprint and machine learning.

Luo, A ; Dong, S ; et al.
In: Environmental science and pollution research international, Jg. 31 (2024-05-01), Heft 22, S. 32136-32151
Online academicJournal

Titel:
Impact of long-term mining activity on groundwater dynamics in a mining district in Xinjiang coal Mine Base, Northwest China: insight from geochemical fingerprint and machine learning.
Autor/in / Beteiligte Person: Luo, A ; Dong, S ; Wang, H ; Ji, Z ; Wang, T ; Hu, X ; Wang, C ; Qu, S ; Zhang, S
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 31 (2024-05-01), Heft 22, S. 32136-32151
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2024
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-024-33401-y
Schlagwort:
  • China
  • Water Pollutants, Chemical analysis
  • Principal Component Analysis
  • Groundwater chemistry
  • Coal Mining
  • Machine Learning
  • Environmental Monitoring methods
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2024 May; Vol. 31 (22), pp. 32136-32151. <i>Date of Electronic Publication: </i>2024 Apr 22.
  • MeSH Terms: Groundwater* / chemistry ; Coal Mining* ; Machine Learning* ; Environmental Monitoring* / methods ; China ; Water Pollutants, Chemical / analysis ; Principal Component Analysis
  • References: Booth CJ (2002) The effects of longwall coal mining on overlying aquifers. Geol Soc Spec Publ 198(1):17–45. https://doi.org/10.1144/GSL.SP.2002.198.01.02. (PMID: 10.1144/GSL.SP.2002.198.01.02) ; Booth CJ (2007) Confined-unconfined changes above longwall coal mining due to increases in fracture porosity. Environ Eng Geosci 13(4):355–367. https://doi.org/10.2113/gseegeosci.13.4.355. (PMID: 10.2113/gseegeosci.13.4.355) ; Brédy J, Gallichand J, Celicourt P, Gumiere SJ (2020) Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches. Agric Water Manag 233:106090. https://doi.org/10.1016/j.agwat.2020.106090. (PMID: 10.1016/j.agwat.2020.106090) ; Buckler K, Vaughan-Jones R, Peers C, Lagadic-Gossmann D, Nye P (1991) Effects of extracellular pH, PCO2 and HCO3- on intracellular pH in isolated type-I cells of the neonatal rat carotid body. J Physiol 444(1):703. https://doi.org/10.1113/jphysiol.1991.sp018902. (PMID: 10.1113/jphysiol.1991.sp018902) ; Céréghino R, Park YS (2009) Review of the self-organizing map (SOM) approach in water resources: commentary. Environ Model Softw 24:945–947. https://doi.org/10.1016/j.envsoft.2009.01.008. (PMID: 10.1016/j.envsoft.2009.01.008) ; Cheng Z, Zhang Y, Su C, Chen Z (2017) Chemical and isotopic response to intensive groundwater abstraction and its implications on aquifer sustainability in Shijiazhuang, China. J Earth Sci 28(3):523–534. https://doi.org/10.1007/s12583-017-0729-5. (PMID: 10.1007/s12583-017-0729-5) ; Choi BY, Yun ST, Kim KH, Kim JW, Kim HM, Koh YK (2014) Hydrogeochemical interpretation of south Korean groundwater monitoring data using self-organizing maps. J Geochem Explor 137:73–84. https://doi.org/10.1016/j.gexplo.2013.12.001. (PMID: 10.1016/j.gexplo.2013.12.001) ; David K, Timms WA, Barbour SL, Mitra R (2017) Tracking changes in the specific storage of overburden rock during longwall coal mining. J Hydrol 553:304–320. https://doi.org/10.1016/j.jhydrol.2017.07.057. (PMID: 10.1016/j.jhydrol.2017.07.057) ; Dong SN, Wang H, Guo XM, Zhou ZF (2021) Characteristics of water hazards in China’s coal mines: a review. Mine Water Environ 40(2):325–333. https://doi.org/10.1007/s10230-021-00770-6. (PMID: 10.1007/s10230-021-00770-6) ; Feng ZK, Niu WJ, Tang ZY, Xu Y, Zhang HR (2021) Evolutionary artificial intelligence model via cooperation search algorithm and extreme learning machine for multiple scales nonstationary hydrological time series prediction. J Hydrol 595:126062. https://doi.org/10.1016/j.jhydrol.2021.126062. (PMID: 10.1016/j.jhydrol.2021.126062) ; Guo W, Zou Y, Hou Q (2012) Fractured zone height of longwall mining and its effects on the overburden aquifers. Int J Min Sci Technol 22:603–606. https://doi.org/10.1016/j.ijmst.2012.08.001. (PMID: 10.1016/j.ijmst.2012.08.001) ; Hasan MSU, Rai AK (2020) Groundwater quality assessment in the lower Ganga Basin using entropy information theory and GIS. J Clean Prod 274:123077. https://doi.org/10.1016/j.jclepro.2020.123077. (PMID: 10.1016/j.jclepro.2020.123077) ; Huang H, Chen Z, Wang T, Zhang L, Wang Y (2019) Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China. Environ Sci Pollut Res 26(29):30055–30068. https://doi.org/10.1007/s11356-019-05984-4. (PMID: 10.1007/s11356-019-05984-4) ; Keery J, Binley A (2007) Temporal and spatial variability of groundwater - surface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336(1–2):1–16. https://doi.org/10.1016/j.jhydrol.2006.12.003. (PMID: 10.1016/j.jhydrol.2006.12.003) ; Li J, Pu J, Zhang T, Wang S, Huo W, Yuan D (2021) Investigation of transport properties and characteristics of a large karst aquifer system in southern China using correlation, spectral, and wavelet analyses. Environ Earth Sci 80(3):1–17. https://doi.org/10.1007/s12665-020-09366-9. (PMID: 10.1007/s12665-020-09366-9) ; Li PY, Wu JH, Tian R, He S, He XD, Xue CY, Zhang K (2018) Geochemistry, hydraulic connectivity and quality appraisal of muitilayered groundwater in the Hongdunzi coal mine, Northwest China. Mine Water Environ 37(2):222–237. https://doi.org/10.1007/s10230-017-6650507-8. (PMID: 10.1007/s10230-017-6650507-8) ; Liu F, Qian H, Shi Z, Wang H (2019) Long-term monitoring of hydrochemical characteristics and nitrogen pollution in the groundwater of Yinchuan area, Yinchuan basin of Northwest China. Environ Earth Sci 78(24):700. https://doi.org/10.1007/s12665-019-8695-0. (PMID: 10.1007/s12665-019-8695-0) ; Liu J, Wang H, Jin D, Xu F, Zhao C (2020) Hydrochemical characteristics and evolution processes of karst groundwater in carboniferous Taiyuan formation in the Pingdingshan coalfield. Environ Earth Sci 79(6):15. https://doi.org/10.1007/s12665-020-8898-4. (PMID: 10.1007/s12665-020-8898-4) ; Liu P, Hoth N, Drebenstedt C, Sun YJ, Xu ZM (2017) Hydro-geochemical paths of multi-layer groundwater system in coal mining regions - using multivariate statistics and geochemical modeling approaches. Sci Total Environ 601–602:1–14. https://doi.org/10.1016/j.scitotenv.2017.05.146. (PMID: 10.1016/j.scitotenv.2017.05.146) ; Lucas L, Jauzein M (2008) Use of principal component analysis to profile temporal and spatial variations of chlorinated solvent concentration in groundwater. Environ Pollut 151(1):205–212. https://doi.org/10.1016/j.envpol.2007.01.054. (PMID: 10.1016/j.envpol.2007.01.054) ; Mao H, Wang G, Liao F, Shi Z, Huang X, Li B, Yan X (2022) Geochemical evolution of groundwater under the influence of human activities: a case study in the southwest of poyang Lake Basin. Appl Geochem 140:105299. https://doi.org/10.1016/j.apgeochem.2022.105299. (PMID: 10.1016/j.apgeochem.2022.105299) ; Mao H, Wang G, Liao F, Shi Z, Zhang H, Chen X, Qiao Z, Li B, Bai Y (2023) Spatial variability of source contributions to nitrate in regional groundwater based on the positive matrix factorization and Bayesian model. J Hazard Mater 445(5):130569. https://doi.org/10.1016/j.jhazmat.2022.130569. (PMID: 10.1016/j.jhazmat.2022.130569) ; Mao H, Wang G, Rao Z, Liao F, Shi Z, Huang X, Chen X, Yang Y (2021) Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics. J Clean Prod 129697. https://doi.org/10.1016/j.jclepro.2021.129697. ; Meng Z, Shi X, Li G (2016) Deformation, failure and permeability of coal-bearing strata during longwall mining. Eng Geol 208:69–80. https://doi.org/10.1016/j.enggeo.2016.04.029. (PMID: 10.1016/j.enggeo.2016.04.029) ; Murkute Y (2014) Hydrogeochemical characterization and quality assessment of groundwater around Umrer coal mine area Nagpur District, Maharashtra, India. Environ Earth Sci 72(10):4059–4073. https://doi.org/10.1007/s12665-014-3295-5. (PMID: 10.1007/s12665-014-3295-5) ; Nakagawa K, Yu ZQ, Berndtsson R, Hosono T (2020) Temporal characteristics of groundwater chemistry affected by the 2016 Kumamoto earthquake using self-organizing maps. J Hydrol 582:124519. https://doi.org/10.1016/j.jhydrol.2019.124519. (PMID: 10.1016/j.jhydrol.2019.124519) ; Nguyen TT, Kawamura A, Tong TN, Nakagawa N, Amaguchi H, Gilbuena RJ (2015) Clustering spatio–seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the red River Delta Vietnam. J Hydrol 522:661–673. https://doi.org/10.1016/j.jhydrol.2015.01.023. (PMID: 10.1016/j.jhydrol.2015.01.023) ; Ni S, Song J, Cai Y, Zhang X, Li Z, Qiu Y, Zhang H, Jiang H (2021) Sedimentary characteristics and evolution of the middle Jurassic Xishanyao formation in the Langka area, southern margin of the Yili Basin. Acta Sedimentol Sin 39(02):434–445 (in Chinese). ; Pang L, Shi Y, Dong H, Feng J, Yuan A, Zhang L, Zhang J (2013) Research and application of automatic monitoring Technology of Groundwater. Acta Geol Sin 87:645–646. ; Park YS, Kwon YS, Hwang SJ, Park S (2014) Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environ Model Softw 55:214–221. https://doi.org/10.1016/j.envsoft.2014.01.031. (PMID: 10.1016/j.envsoft.2014.01.031) ; Qu S, Duan L, Shi Z, Mao H, Wang G, Liu T, Yu R, Peng X (2022) Identifying the spatial pattern, driving factors and potential human health risks of nitrate and fluoride enriched groundwater of Ordos BasinNorthwest China. J Clean Prod 376:134289. https://doi.org/10.1016/j.jclepro.2022.134289. (PMID: 10.1016/j.jclepro.2022.134289) ; Qu S, Shi Z, Wang G, Han J (2020a) Application of multiple approaches to investigate hydraulic connection in multiple aquifers system in coalfield. J Hydrol 595:125673. https://doi.org/10.1016/j.jhydrol.2020.125673. (PMID: 10.1016/j.jhydrol.2020.125673) ; Qu S, Shi ZM, Liang XY, Wang GC, Han JQ (2021) Multiple factors control groundwater chemistry and quality of multi-layer groundwater system in Northwest China coalfield—using self-organizing maps (SOM). J Geochem Explor 227:106795. https://doi.org/10.1016/j.gexplo.2021.106795. (PMID: 10.1016/j.gexplo.2021.106795) ; Qu S, Wang G, Shi Z, Zhou P, Xu Q, Zhu Z (2020b) Temporal changes of hydraulic properties of overburden aquifer induced by longwall mining in Ningtiaota coalfield, Northwest China. J Hydrol 582:124525. https://doi.org/10.1016/j.jhydrol.2019.124525. (PMID: 10.1016/j.jhydrol.2019.124525) ; Shi Z, Wang GC (2014) Hydrological response to multiple large distant earthquakes in the mile well, China. J Geophys Res Earth Surf 119:2448–2459. https://doi.org/10.1002/2014JF003184. (PMID: 10.1002/2014JF003184) ; Shiri J, Shamshirband S, Kisi O, Karimi S, Bateni SM, Hosseini Nezhad SH, Hashemi A (2016) Prediction of water-level in the Urmia Lake using the extreme learning machine approach. Water Resour Manag 30(14):5217–5229. https://doi.org/10.1007/s11269-016-1480-x. (PMID: 10.1007/s11269-016-1480-x) ; Singh CK, Kumar A, Shashtri S, Kumar A, Kumar P, Mallick J (2017) Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi India. J Geochem Explor 175:59–71. https://doi.org/10.1016/j.gexplo.2017.01.001. (PMID: 10.1016/j.gexplo.2017.01.001) ; Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM toolbox for Matlab 5. Helsinki University of Technology, p 59. ; Wang WX, Sui WH, Faybishenko B, Stringfellow WT (2016) Permeability variations within mining-induced fractured rock mass and its influence on groundwater inrush. Environ Earth Sci 75(4):326. https://doi.org/10.1007/s12665-015-5064-5. (PMID: 10.1007/s12665-015-5064-5) ; Wu C, Wu X, Lu CY, Sun QY, He X, Yan LJ, Qin T (2022) Characteristics and driving factors of lake level variations by climatic factors and groundwater level. J Hydrol 608:127654. https://doi.org/10.1016/j.jhydrol.2022.127654. (PMID: 10.1016/j.jhydrol.2022.127654) ; Xiao Y, Hao Q, Zhang Y, Zhu Y, Yin S, Qin L, Li X (2021) Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci Total Environ 802:149909. https://doi.org/10.1016/j.scitotenv.2021.149909. (PMID: 10.1016/j.scitotenv.2021.149909) ; Xiao Y, Liu K, Hao Q, Xiao D, Zhu Y, Yin S, Zhang Y (2022) Hydrogeochemical insights into the signatures, genesis and sustainable perspective of nitrate enriched groundwater in the piedmont of Hutuo watershed, China. Catena 212:106020. https://doi.org/10.1016/j.catena.2022.106020. (PMID: 10.1016/j.catena.2022.106020) ; Xiao Y, Shao J, Frape S, Cui Y, Dang X, Wang S, Ji Y (2018) Groundwater origin, flow regime and geochemical evolution in arid endorheic watersheds: a case study from the Qaidam Basin, northwestern China. Hydrol Earth Syst Sci 22:4381–4400. https://doi.org/10.5194/hess-22-4381-2018. (PMID: 10.5194/hess-22-4381-2018) ; Xu Z, Chen T, Liu S, Sun Y, Ren D, Huan B, Zhang P (2023) Characteristics of water-bearing media in Jurassic strata and groundwater occurrence and migration law in Yili mining area, Xinjiang. Coal Sci Technol. https://doi.org/10.13199/j.cnki.cst.2023-0335 (in Chinese). ; Yan R, Woith H, Wang R, Wang GC (2017) Decadal radon cycles in a hot spring. Sci Rep 7(1):12120. https://doi.org/10.1038/s4159801712441-0. (PMID: 10.1038/s4159801712441-0) ; Zhang H, Xu G, Zhan H, Chen X, Liu M, Wang M (2020) Identification of hydrogeochemical processes and transport paths of a multi-aquifer system in closed mining regions. J Hydrol 589:125344. https://doi.org/10.1016/j.jhydrol.2020.125344. (PMID: 10.1016/j.jhydrol.2020.125344) ; Zhang J, Chen LW, Hou XW, Li J, Ren XX, Lin ML, Zhang M, Wang YX, Tian Y (2022a) Effects of multi-factors on the spatiotemporal variations of deep confined groundwater in coal mining regions, North China. Sci Total Environ 823:153741. https://doi.org/10.1016/j.scitotenv.2022.153741. (PMID: 10.1016/j.scitotenv.2022.153741) ; Zhang Q, López DL (2019) Use of time series analysis to evaluate the impacts of underground mining on the hydraulic properties of groundwater of Dysart woods, Ohio. Mine Water Environ 38(3):566–580. https://doi.org/10.1007/s10230-019-00619-z. (PMID: 10.1007/s10230-019-00619-z) ; Zhang S, Shi Z, Wang G, Yan R, Zhang Z (2022b) Application of the extreme gradient boosting method to analyze the mechanism of radon anomalous change before the Lijiang mw 7.0 earthquake in Banglazhang hot spring. J Hydrol. https://doi.org/10.1016/j.jhydrol.2022.128249. ; Zhu G, Wu X, Ge J, Liu F, Zhao W, Wu C (2020) Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM). J Clean Prod 257:120664. https://doi.org/10.1016/j.jclepro.2020.120664. (PMID: 10.1016/j.jclepro.2020.120664)
  • Contributed Indexing: Keywords: Coal mine groundwater; Groundwater dynamics; Hydrochemistry; Machine learning; Xinjiang
  • Substance Nomenclature: 0 (Water Pollutants, Chemical)
  • Entry Date(s): Date Created: 20240421 Date Completed: 20240528 Latest Revision: 20240528
  • Update Code: 20240528

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -