Zum Hauptinhalt springen

Neuroinflammation and the role of epigenetic-based therapies for Huntington's disease management: the new paradigm.

Temgire, P ; Arthur, R ; et al.
In: Inflammopharmacology, Jg. 32 (2024-06-01), Heft 3, S. 1791-1804
Online academicJournal

Titel:
Neuroinflammation and the role of epigenetic-based therapies for Huntington's disease management: the new paradigm.
Autor/in / Beteiligte Person: Temgire, P ; Arthur, R ; Kumar, P
Link:
Zeitschrift: Inflammopharmacology, Jg. 32 (2024-06-01), Heft 3, S. 1791-1804
Veröffentlichung: Basel ; Boston : Birkhäuser ; <i>Original Publication</i>: Dordrecht, The Netherlands ; Norwell, MA, USA : Kluwer Academic Publishers, c1991-, 2024
Medientyp: academicJournal
ISSN: 1568-5608 (electronic)
DOI: 10.1007/s10787-024-01477-0
Schlagwort:
  • Humans
  • Animals
  • DNA Methylation genetics
  • Inflammation genetics
  • Huntington Disease genetics
  • Huntington Disease therapy
  • Epigenesis, Genetic
  • Neuroinflammatory Diseases genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Inflammopharmacology] 2024 Jun; Vol. 32 (3), pp. 1791-1804. <i>Date of Electronic Publication: </i>2024 Apr 23.
  • MeSH Terms: Huntington Disease* / genetics ; Huntington Disease* / therapy ; Epigenesis, Genetic* ; Neuroinflammatory Diseases* / genetics ; Humans ; Animals ; DNA Methylation / genetics ; Inflammation / genetics
  • References: Abdanipour A, Schluesener HJ, Tiraihi T (2012) Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 16(2):90–100. (PMID: 228012823600951) ; Arthur R, Navik U, Kumar P (2022) Repurposing artemisinins as neuroprotective agents: a focus on the PI3k/Akt signalling pathway. Naunyn Schmiedebergs Arch Pharmacol 396(4):593–605. (PMID: 3646474810.1007/s00210-022-02350-z) ; Athira KV, Sadanandan P, Chakravarty S (2021) Repurposing vorinostat for the treatment of disorders affecting brain. Neuromolecular Med 23(4):449–465. (PMID: 3394887810.1007/s12017-021-08660-4) ; Ban JJ et al (2017) MicroRNA-27a reduces mutant huntingtin aggregation in an in vitro model of Huntington’s disease. Biochem Biophys Res Commun 488(2):316–321. (PMID: 2849553310.1016/j.bbrc.2017.05.040) ; Bassi S et al (2017) Epigenetics of Huntington’s disease. Adv Exp Med Biol 978:277–299. (PMID: 2852355210.1007/978-3-319-53889-1_15) ; Berson A et al (2018) Epigenetic regulation in neurodegenerative diseases. Trends Neurosci 41(9):587–598. (PMID: 29885742617453210.1016/j.tins.2018.05.005) ; Biagioli M et al (2015) Htt CAG repeat expansion confers pleiotropic gains of mutant huntingtin function in chromatin regulation. Hum Mol Genet 24(9):2442–2457. (PMID: 25574027438385910.1093/hmg/ddv006) ; Breiling A, Lyko F (2015) Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 8:24. (PMID: 26195987450732610.1186/s13072-015-0016-6) ; Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599. (PMID: 1988681210.1146/annurev.genet.032608.103928) ; Caron NS, Dorsey ER, Hayden MR (2018) Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discov 17(10):729–750. (PMID: 3023745410.1038/nrd.2018.133) ; Chang KH, Wu YR, Chen CM (2017) Down-regulation of miR-9* in the peripheral leukocytes of Huntington’s disease patients. Orphanet J Rare Dis 12(1):185. (PMID: 29258536573798510.1186/s13023-017-0742-x) ; Cheng PH et al (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 93(2):306–312. (PMID: 23810380373882010.1016/j.ajhg.2013.05.025) ; Cheray M, Joseph B (2018) Epigenetics control microglia plasticity. Front Cell Neurosci 12:243. (PMID: 30123114608556010.3389/fncel.2018.00243) ; Chouliaras L et al (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90(4):498–510. (PMID: 2009725410.1016/j.pneurobio.2010.01.002) ; Das S, Bhattacharyya NP (2015) Heat shock factor 1-regulated miRNAs can target huntingtin and suppress aggregates of mutant huntingtin. Microrna 4(3):185–193. (PMID: 2663435010.2174/2211536605666151204111323) ; Das E, Jana NR, Bhattacharyya NP (2015) Delayed cell cycle progression in STHdh(Q111)/Hdh(Q111) cells, a cell model for Huntington’s disease mediated by microRNA-19a, microRNA-146a and microRNA-432. Microrna 4(2):86–100. (PMID: 2616546610.2174/2211536604666150713105606) ; De Souza RA et al (2016) DNA methylation profiling in human Huntington’s disease brain. Hum Mol Genet 25(10):2013–2030. (PMID: 2695332010.1093/hmg/ddw076) ; Díez-Planelles C et al (2016) Circulating microRNAs in Huntington’s disease: emerging mediators in metabolic impairment. Pharmacol Res 108:102–110. (PMID: 2715505910.1016/j.phrs.2016.05.005) ; Dompierre JP et al (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27(13):3571–3583. (PMID: 17392473667211610.1523/JNEUROSCI.0037-07.2007) ; Dong X, Cong S (2021) MicroRNAs in Huntington’s disease: diagnostic biomarkers or therapeutic agents? Front Cell Neurosci 15:705348. (PMID: 34421543837780810.3389/fncel.2021.705348) ; Ebbel EN et al (2010) Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry. Anal Biochem 399(2):152–161. (PMID: 20074541356849510.1016/j.ab.2010.01.010) ; Faragó A et al (2022) Acetylation state of lysine 14 of histone H33 affects mutant huntingtin induced pathogenesis. Int J Mol Sci 23(23):15173. (PMID: 36499499973822810.3390/ijms232315173) ; Feng J et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13(4):423–430. (PMID: 20228804306077210.1038/nn.2514) ; Ferrante RJ et al (2004) Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. J Neurosci 24(46):10335–10342. (PMID: 15548647257723110.1523/JNEUROSCI.2599-04.2004) ; Gardian G et al (2005) Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington’s disease. J Biol Chem 280(1):556–563. (PMID: 1549440410.1074/jbc.M410210200) ; Ghosh P, Saadat A (2021) Neurodegeneration and epigenetics: a review. Neurologia (Engl Ed). ; Ghosh R, Tabrizi SJ (2018) Clinical features of Huntington’s disease. Adv Exp Med Biol 1049:1–28. (PMID: 2942709610.1007/978-3-319-71779-1_1) ; Glajch KE, Sadri-Vakili G (2015) Epigenetic mechanisms involved in Huntington’s disease pathogenesis. J Huntingtons Dis 4(1):1–15. (PMID: 2581321810.3233/JHD-140134) ; Gray SG (2010) Targeting histone deacetylases for the treatment of Huntington’s disease. CNS Neurosci Ther 16(6):348–361. (PMID: 20642797649385710.1111/j.1755-5949.2010.00184.x) ; Guedes-Dias P et al (2015) HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim Biophys Acta 1852(11):2484–2493. (PMID: 2630048510.1016/j.bbadis.2015.08.012) ; Guo JU et al (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14(10):1345–1351. (PMID: 21874013318340110.1038/nn.2900) ; Her LS et al (2017) miR-196a enhances neuronal morphology through suppressing RANBP10 to provide neuroprotection in Huntington’s disease. Theranostics 7(9):2452–2462. (PMID: 28744327552574910.7150/thno.18813) ; Horvath S et al (2016) Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY) 8(7):1485–1512. (PMID: 2747994510.18632/aging.101005) ; Hur K et al (2014) Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63(4):635–646. (PMID: 2370431910.1136/gutjnl-2012-304219) ; Hyeon JW, Kim AH, Yano H (2021) Epigenetic regulation in Huntington’s disease. Neurochem Int 148:105074. (PMID: 34038804911027410.1016/j.neuint.2021.105074) ; Igarashi S et al (2003) Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation. NeuroReport 14(4):565–568. (PMID: 1265788610.1097/00001756-200303240-00007) ; Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82. (PMID: 2780970610.1080/01616412.2016.1251711) ; Jia H et al (2015) HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A 112(1):E56–E64. (PMID: 2553538210.1073/pnas.1415195112) ; Jia H et al (2016) The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington’s disease mice. PLoS One 11(3):e0152498. (PMID: 27031333481651910.1371/journal.pone.0152498) ; Jimenez-Sanchez M et al (2017) Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 7(7):a024240. (PMID: 27940602549505510.1101/cshperspect.a024240) ; Johnson EB et al (2021) Dynamics of cortical degeneration over a decade in Huntington’s disease. Biol Psychiatry 89(8):807–816. (PMID: 33500176798693610.1016/j.biopsych.2020.11.009) ; Jovicic A et al (2013) MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One 8(1):e54222. (PMID: 23349832354790710.1371/journal.pone.0054222) ; Jurcau A (2022) Molecular pathophysiological mechanisms in Huntington’s disease. Biomedicines 10(6):1432. (PMID: 35740453921985910.3390/biomedicines10061432) ; Juźwik CA et al (2019) microRNA dysregulation in neurodegenerative diseases: a systematic review. Prog Neurobiol 182:101664. (PMID: 3135684910.1016/j.pneurobio.2019.101664) ; Kanherkar RR, Bhatia-Dey N, Csoka AB (2014) Epigenetics across the human lifespan. Front Cell Dev Biol 2:49. (PMID: 25364756420704110.3389/fcell.2014.00049) ; Kaur G et al (2022) DNA methylation: a promising approach in management of Alzheimer’s disease and other neurodegenerative disorders. Biology (Basel) 11(1):90. (PMID: 35053088) ; Kawahara Y (2014) Human diseases caused by germline and somatic abnormalities in microRNA and microRNA-related genes. Congenit Anom (Kyoto) 54(1):12–21. (PMID: 2433002010.1111/cga.12043) ; Killoran A et al (2013) Characterization of the Huntington intermediate CAG repeat expansion phenotype in PHAROS. Neurology 80(22):2022–2027. (PMID: 23624566371640810.1212/WNL.0b013e318294b304) ; Kim A et al (2021) New avenues for the treatment of Huntington’s disease. Int J Mol Sci 22(16):8363. (PMID: 34445070839436110.3390/ijms22168363) ; Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet 58(7):439–445. (PMID: 2373912210.1038/jhg.2013.66) ; Kumar V et al (2022) Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: current targets and future perspective. Curr Neuropharmacol 20(1):158–178. (PMID: 34151764919954310.2174/1570159X19666210609160017) ; Kunkanjanawan T et al (2016) miR-196a ameliorates cytotoxicity and cellular phenotype in transgenic Huntington’s disease monkey neural cells. PLoS One 11(9):e0162788. (PMID: 27631085502508710.1371/journal.pone.0162788) ; Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1):3. (PMID: 26751487) ; Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11(3):191–203. (PMID: 2012508610.1038/nrg2732) ; Le Gras S et al (2017) Altered enhancer transcription underlies Huntington’s disease striatal transcriptional signature. Sci Rep 7:42875. (PMID: 28225006532050910.1038/srep42875) ; Le Martelot G et al (2012) Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10(11):e1001442. (PMID: 23209382350795910.1371/journal.pbio.1001442) ; Lee J et al (2008) Monoallele deletion of CBP leads to pericentromeric heterochromatin condensation through ESET expression and histone H3 (K9) methylation. Hum Mol Genet 17(12):1774–1782. (PMID: 18319327290089010.1093/hmg/ddn067) ; Lee J et al (2013) Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 10(4):664–676. (PMID: 24006238380587110.1007/s13311-013-0206-5) ; Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. (PMID: 28099414540489010.1038/nature21029) ; Love IM et al (2012) The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3. Cell Cycle 11(13):2458–2466. (PMID: 22713239340487710.4161/cc.20864) ; Lu AT et al (2020) DNA methylation study of Huntington’s disease and motor progression in patients and in animal models. Nat Commun 11(1):4529. (PMID: 32913184748478010.1038/s41467-020-18255-5) ; Marques SC et al (2010) Alzheimer’s disease: the quest to understand complexity. J Alzheimers Dis 21(2):373–383. (PMID: 2055513210.3233/JAD-2010-100303) ; Martí E et al (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38(20):7219–7235. (PMID: 20591823297835410.1093/nar/gkq575) ; McFarland KN et al (2014) MeCP2: a novel huntingtin interactor. Hum Mol Genet 23(4):1036–1044. (PMID: 2410546610.1093/hmg/ddt499) ; Mingardi J et al (2018) miRNA editing: new insights into the fast control of gene expression in health and disease. Mol Neurobiol 55(10):7717–7727. (PMID: 2946026510.1007/s12035-018-0951-x) ; Mishra J, Chaudhary T, Kumar A (2014) Rosiglitazone synergizes the neuroprotective effects of valproic acid against quinolinic acid-induced neurotoxicity in rats: targeting PPARγ and HDAC pathways. Neurotox Res 26(2):130–151. (PMID: 2456681410.1007/s12640-014-9458-z) ; Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35(1):3–11. (PMID: 25632930479799110.1055/s-0034-1397344) ; Moumné L, Betuing S, Caboche J (2013) Multiple aspects of gene dysregulation in Huntington’s disease. Front Neurol 4:127. (PMID: 24167500380634010.3389/fneur.2013.00127) ; Nance MA (2017) Genetics of Huntington disease. Handb Clin Neurol 144:3–14. (PMID: 2894712310.1016/B978-0-12-801893-4.00001-8) ; Ng CW et al (2013) Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc Natl Acad Sci U S A 110(6):2354–2359. (PMID: 23341638356832510.1073/pnas.1221292110) ; Packer AN et al (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346. (PMID: 19118166312400210.1523/JNEUROSCI.2390-08.2008) ; Pagiatakis C et al (2021) Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res 33(4):737–745. (PMID: 3181157210.1007/s40520-019-01430-0) ; Pan Y et al (2016) Inhibition of DNA methyltransferases blocks mutant huntingtin-induced neurotoxicity. Sci Rep 6:31022. (PMID: 27516062498189210.1038/srep31022) ; Parbin S et al (2014) Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem 62(1):11–33. (PMID: 24051359387380310.1369/0022155413506582) ; Qi X et al (2017) Long non-coding RNA SNHG14 promotes microglia activation by regulating miR-145-5p/PLA2G4A in cerebral infarction. Neuroscience 348:98–106. (PMID: 2821574810.1016/j.neuroscience.2017.02.002) ; Ramazi S, Allahverdi A, Zahiri J (2020) Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. J Biosci 45:135. (PMID: 3318425110.1007/s12038-020-00099-2) ; Ratovitski T et al (2015) PRMT5-mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington’s disease (HD). Cell Cycle 14(11):1716–1729. (PMID: 25927346461511510.1080/15384101.2015.1033595) ; Remely M et al (2015) Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 172(11):2756–2768. (PMID: 2504699710.1111/bph.12854) ; Ryu H et al (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci U S A 103(50):19176–19181. (PMID: 17142323174819510.1073/pnas.0606373103) ; Saba J et al (2022) Neuroinflammation in Huntington’s disease: a starring role for astrocyte and microglia. Curr Neuropharmacol 20(6):1116–1143. (PMID: 34852742988682110.2174/1570159X19666211201094608) ; Sadri-Vakili G, Cha JH (2006) Histone deacetylase inhibitors: a novel therapeutic approach to Huntington’s disease (complex mechanism of neuronal death). Curr Alzheimer Res 3(4):403–408. (PMID: 1701787110.2174/156720506778249407) ; Schaffert LN, Carter WG (2020) Do post-translational modifications influence protein aggregation in neurodegenerative diseases: a systematic review. Brain Sci 10(4):232. (PMID: 32290481722627410.3390/brainsci10040232) ; Schueller E et al (2020) Dysregulation of histone acetylation pathways in hippocampus and frontal cortex of Alzheimer’s disease patients. Eur Neuropsychopharmacol 33:101–116. (PMID: 3205759110.1016/j.euroneuro.2020.01.015) ; Shukla S, Tekwani BL (2020) Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol 11:537. (PMID: 32390854719411610.3389/fphar.2020.00537) ; Siebzehnrübl FA et al (2018) Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proc Natl Acad Sci U S A 115(37):E8765–E8774. (PMID: 30150378614049310.1073/pnas.1807962115) ; Sinha M, Mukhopadhyay S, Bhattacharyya NP (2012) Mechanism(s) of alteration of micro RNA expressions in Huntington’s disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. Neuromolecular Med 14(4):221–243. (PMID: 2258115810.1007/s12017-012-8183-0) ; Sixto-López Y, Bello M, Correa-Basurto J (2020) Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. J Comput Aided Mol Des 34(8):857–878. (PMID: 3218012310.1007/s10822-020-00304-2) ; Song L et al (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77(2):504–510. (PMID: 1564904610.1021/ac0489420) ; Soragni E et al (2011) Evaluation of histone deacetylase inhibitors as therapeutics for neurodegenerative diseases. Methods Mol Biol 793:495–508. (PMID: 21913121354862210.1007/978-1-61779-328-8_32) ; Stack EC et al (2007) Modulation of nucleosome dynamics in Huntington’s disease. Hum Mol Genet 16(10):1164–1175. (PMID: 1740371810.1093/hmg/ddm064) ; Subhramanyam CS et al (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 94:112–120. (PMID: 3107779610.1016/j.semcdb.2019.05.004) ; Sugama S et al (2009) Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets 8(4):277–284. (PMID: 1975441110.2174/187152809789352249) ; Süssmuth SD et al (2015) An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br J Clin Pharmacol 79(3):465–476. (PMID: 25223731434595710.1111/bcp.12512) ; Tafrihi M, Hasheminasab E (2019) MiRNAs: biology, biogenesis, their web-based tools, and databases. Microrna 8(1):4–27. (PMID: 3014702210.2174/2211536607666180827111633) ; Tan L, Yu JT, Tan L (2015) Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol Neurobiol 51(3):1249–1262. (PMID: 2497398610.1007/s12035-014-8803-9) ; Tapias A, Wang ZQ (2017) Lysine acetylation and deacetylation in brain development and neuropathies. Genomics Proteomics Bioinformatics 15(1):19–36. (PMID: 28161493533940910.1016/j.gpb.2016.09.002) ; Teleanu DM et al (2022) An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci 23(11):5938. (PMID: 35682615918065310.3390/ijms23115938) ; Thomas EA et al (2008) The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci U S A 105(40):15564–15569. (PMID: 18829438256308110.1073/pnas.0804249105) ; Valor LM (2017) Understanding histone deacetylation in Huntington’s disease. Oncotarget 8(4):5660–5661. (PMID: 2808620410.18632/oncotarget.13924) ; Valor LM, Guiretti D (2014) What’s wrong with epigenetics in Huntington’s disease? Neuropharmacology 80:103–114. (PMID: 2418431510.1016/j.neuropharm.2013.10.025) ; Vashishtha M et al (2013) Targeting H3K4 trimethylation in Huntington disease. Proc Natl Acad Sci U S A 110(32):E3027–E3036. (PMID: 23872847374088210.1073/pnas.1311323110) ; Villar-Menéndez I et al (2013) Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease. Neuromolecular Med 15(2):295–309. (PMID: 2338598010.1007/s12017-013-8219-0) ; Wang F et al (2013) Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet 22(18):3641–3653. (PMID: 2366934810.1093/hmg/ddt214) ; Wen Y, Yu Y, Fu X (2017) LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IκB phosphorylation and NF-κB activation. Biochem Biophys Res Commun 487(4):923–929. (PMID: 2847662010.1016/j.bbrc.2017.05.005) ; Wood H (2013) Neurodegenerative disease: altered DNA methylation and RNA splicing could be key mechanisms in Huntington disease. Nat Rev Neurol 9(3):119. (PMID: 2339964310.1038/nrneurol.2013.23) ; Yang S et al (2020) Lack of RAN-mediated toxicity in Huntington’s disease knock-in mice. Proc Natl Acad Sci U S A 117(8):4411–4417. (PMID: 32029588704913010.1073/pnas.1919197117) ; Yapijakis C (2017) Huntington disease: genetics, prevention, and therapy approaches. Adv Exp Med Biol 987:55–65. (PMID: 2897144710.1007/978-3-319-57379-3_6) ; Yeh HH et al (2013) Histone deacetylase class II and acetylated core histone immunohistochemistry in human brains with Huntington’s disease. Brain Res 1504:16–24. (PMID: 2341989210.1016/j.brainres.2013.02.012) ; Ying SY, Chang DC, Lin SL (2018) The microRNA. Methods Mol Biol 1733:1–25. (PMID: 2943591910.1007/978-1-4939-7601-0_1) ; Younesian S et al (2022) The DNA methylation in neurological diseases. Cells 11(21):3439. (PMID: 36359835965782910.3390/cells11213439) ; Zhou Y et al (2016) MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol Neurodegener 11:28. (PMID: 27084336483389610.1186/s13024-016-0094-3) ; Zimmer-Bensch G (2020) Epigenomic remodeling in Huntington’s disease-master or servant? Epigenomes 4(3):15. (PMID: 34968288859470010.3390/epigenomes4030015) ; Zsindely N, Bodai L (2018) Histone methylation in Huntington’s disease: are bivalent promoters the critical targets? Neural Regen Res 13(7):1191–1192. (PMID: 30028325606521810.4103/1673-5374.235029) ; Zsindely N, Siági F, Bodai L (2021) DNA methylation in Huntington’s disease. Int J Mol Sci 22(23):12736. (PMID: 34884540865746010.3390/ijms222312736) ; Zuccato C et al (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35(1):76–83. (PMID: 1288172210.1038/ng1219)
  • Contributed Indexing: Keywords: DNA methyltransferase inhibitor; Epigenetic; Histone deacetylase inhibitor; Huntington’s disease; Post-translational modification; Transcriptional activation
  • Entry Date(s): Date Created: 20240423 Date Completed: 20240529 Latest Revision: 20240530
  • Update Code: 20240531

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -