Zum Hauptinhalt springen

Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure.

Muniesa-Vargas, A ; Davó-Martínez, C ; et al.
In: Nature communications, Jg. 15 (2024-04-25), Heft 1, S. 3490
Online academicJournal

Titel:
Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure.
Autor/in / Beteiligte Person: Muniesa-Vargas, A ; Davó-Martínez, C ; Ribeiro-Silva, C ; van der Woude M ; Thijssen, KL ; Haspels, B ; Häckes, D ; Kaynak, ÜU ; Kanaar, R ; Marteijn, JA ; Theil, AF ; Kuijten, MMP ; Vermeulen, W ; Lans, H
Link:
Zeitschrift: Nature communications, Jg. 15 (2024-04-25), Heft 1, S. 3490
Veröffentlichung: [London] : Nature Pub. Group, 2024
Medientyp: academicJournal
ISSN: 2041-1723 (electronic)
DOI: 10.1038/s41467-024-47935-9
Schlagwort:
  • Humans
  • Animals
  • Caenorhabditis elegans Proteins metabolism
  • Caenorhabditis elegans Proteins genetics
  • Xeroderma Pigmentosum Group A Protein metabolism
  • Xeroderma Pigmentosum Group A Protein genetics
  • Protein Binding
  • Transcription Factors metabolism
  • Transcription Factors genetics
  • Mutation
  • Nuclear Proteins metabolism
  • Nuclear Proteins genetics
  • Caenorhabditis elegans metabolism
  • Caenorhabditis elegans genetics
  • DNA Damage
  • DNA Repair
  • Transcription Factor TFIIH metabolism
  • Transcription Factor TFIIH genetics
  • DNA-Binding Proteins metabolism
  • DNA-Binding Proteins genetics
  • Endonucleases metabolism
  • Endonucleases genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
  • Language: English
  • [Nat Commun] 2024 Apr 25; Vol. 15 (1), pp. 3490. <i>Date of Electronic Publication: </i>2024 Apr 25.
  • MeSH Terms: Caenorhabditis elegans* / metabolism ; Caenorhabditis elegans* / genetics ; DNA Damage* ; DNA Repair* ; Transcription Factor TFIIH* / metabolism ; Transcription Factor TFIIH* / genetics ; DNA-Binding Proteins* / metabolism ; DNA-Binding Proteins* / genetics ; Endonucleases* / metabolism ; Endonucleases* / genetics ; Humans ; Animals ; Caenorhabditis elegans Proteins / metabolism ; Caenorhabditis elegans Proteins / genetics ; Xeroderma Pigmentosum Group A Protein / metabolism ; Xeroderma Pigmentosum Group A Protein / genetics ; Protein Binding ; Transcription Factors / metabolism ; Transcription Factors / genetics ; Mutation ; Nuclear Proteins / metabolism ; Nuclear Proteins / genetics
  • References: Schärer, O. D. Nucleotide excision repair in Eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013). (PMID: 24086042378304410.1101/cshperspect.a012609) ; Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. J. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014). (PMID: 2495420910.1038/nrm3822) ; Mu, H., Geacintov, N. E., Broyde, S., Yeo, J. E. & Schärer, O. D. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair 71, 33–42 (2018). vol. (PMID: 30174301634076410.1016/j.dnarep.2018.08.005) ; Sugasawa, K. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair (Amst.) 44, 110–117 (2016). (PMID: 2726455610.1016/j.dnarep.2016.05.015) ; Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J. A. The DNA damage response to transcription stress. Nat. Rev. Mol. Cell Biol. 20, 766–784 (2019). (PMID: 3155882410.1038/s41580-019-0169-4) ; Jia, N. et al. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair (Amst.) 106, 103192 (2021). (PMID: 3435880610.1016/j.dnarep.2021.103192) ; Theil, A. F., Häckes, D. & Lans, H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair (Amst.) 132, 103568 (2023). (PMID: 3797760010.1016/j.dnarep.2023.103568) ; Bernardes de Jesus, B. M., Bjørås, M., Coin, F. & Egly, J. M. Dissection of the Molecular Defects Caused by Pathogenic Mutations in the DNA Repair Factor XPC. Mol. Cell. Biol. 28, 7225–7235 (2008). (PMID: 18809580259338710.1128/MCB.00781-08) ; Okuda, M., Nakazawa, Y., Guo, C., Ogi, T. & Nishimura, Y. Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways. Nucleic Acids Res. 45, 13043–13055 (2017). (PMID: 29069470572743810.1093/nar/gkx970) ; Oksenych, V., De Jesus, B. B., Zhovmer, A., Egly, J. M. & Coin, F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 28, 2971–2980 (2009). (PMID: 19713942276010710.1038/emboj.2009.230) ; van der Weegen, Y. et al. The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nat. Commun. 11, 1–16 (2020). ; Ribeiro-Silva, C. et al. Ubiquitin and TFIIH-stimulated DDB2 dissociation drives DNA damage handover in nucleotide excision repair. Nat. Commun. 11, 4868 (2020). (PMID: 32985517752223110.1038/s41467-020-18705-0) ; Coin, F., Oksenych, V. & Egly, J. M. Distinct Roles for the XPB/p52 and XPD/p44 Subcomplexes of TFIIH in Damaged DNA Opening during Nucleotide Excision Repair. Mol. Cell 26, 245–256 (2007). (PMID: 1746662610.1016/j.molcel.2007.03.009) ; Sugasawa, K., Akagi, Jichi, Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol. Cell 36, 642–653 (2009). (PMID: 1994182410.1016/j.molcel.2009.09.035) ; Li, C. L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59, 1025–1034 (2015). (PMID: 26384665461753610.1016/j.molcel.2015.08.012) ; De Laat, W. L. et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 12, 2598–2609 (1998). (PMID: 971641131707810.1101/gad.12.16.2598) ; Matsunaga, T., Park, C. H., Bessho, T., Mu, D. & Sancar, A. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J. Biol. Chem. 271, 11047–11050 (1996). (PMID: 862664410.1074/jbc.271.19.11047) ; Sugitani, N., Sivley, R. M., Perry, K. E., Capra, J. A. & Chazin, W. J. XPA: A key scaffold for human nucleotide excision repair. DNA Repair 44, 123–135 (2016). (PMID: 27247238495858510.1016/j.dnarep.2016.05.018) ; Kokic, G. et al. Structural basis of TFIIH activation for nucleotide excision repair. Nat. Commun. 10, 2885 (2019). (PMID: 31253769659921110.1038/s41467-019-10745-5) ; Coin, F. et al. Nucleotide Excision Repair Driven by the Dissociation of CAK from TFIIH. Mol. Cell 31, 9–20 (2008). (PMID: 1861404310.1016/j.molcel.2008.04.024) ; Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009). (PMID: 19279666268370110.1038/emboj.2009.49) ; Fagbemi, A. F., Orelli, B. & Schärer, O. D. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair (Amst.) 10, 722–729 (2011). (PMID: 2159286810.1016/j.dnarep.2011.04.022) ; Muniesa-Vargas, A. et al. XPG: a multitasking genome caretaker. Cell. Mol. Life Sci. 79, 1–20 (2022). (PMID: 10.1007/s00018-022-04194-5) ; van Toorn, M. et al. Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Mol. Cell 82, 1343–1358.e8 (2022). (PMID: 35271816947349710.1016/j.molcel.2022.02.020) ; Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37, 714–727 (2010). (PMID: 2022737410.1016/j.molcel.2010.02.009) ; Ferri, D., Orioli, D. & Botta, E. Heterogeneity and overlaps in nucleotide excision repair disorders. Clin. Genet. 97, 12–24 (2020). (PMID: 3091993710.1111/cge.13545) ; Lehmann, A. R., McGibbon, D. & Stefanini, M. Xeroderma pigmentosum. Orphanet J. Rare Dis. 6, 70 (2011). (PMID: 22044607322164210.1186/1750-1172-6-70) ; Natale, V. A comprehensive description of the severity groups in Cockayne syndrome. Am. J. Med. Genet. A 155A, 1081–1095 (2011). (PMID: 2148047710.1002/ajmg.a.33933) ; Natale, V. & Raquer, H. Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J. Rare Dis. 12, 65 (2017). (PMID: 28376890537970010.1186/s13023-017-0616-2) ; Kraemer, K. H. et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: A complex genotype-phenotype relationship. Neuroscience 145, 1388–1396 (2007). (PMID: 1727601410.1016/j.neuroscience.2006.12.020) ; Theil, A. F., Hoeijmakers, J. H. J. & Vermeulen, W. TTDA: big impact of a small protein. Exp. Cell Res. 329, 61–68 (2014). (PMID: 2501628310.1016/j.yexcr.2014.07.008) ; Stefanini, M., Botta, E., Lanzafame, M. & Orioli, D. Trichothiodystrophy: From basic mechanisms to clinical implications. DNA Repair 9, 2–10 (2010). (PMID: 1993149310.1016/j.dnarep.2009.10.005) ; Rahbar, Z. & Naraghi, M. De Sanctis-Cacchione syndrome: A case report and literature review. Int. J. Women’s Dermatol. 1, 136–139 (2015). (PMID: 10.1016/j.ijwd.2015.05.003) ; Karikkineth, A. C., Scheibye-Knudsen, M., Fivenson, E., Croteau, D. L. & Bohr, V. A. Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res. Rev. 33, 3–17 (2017). (PMID: 2750760810.1016/j.arr.2016.08.002) ; Wang, Y. et al. Dysregulation of gene expression as a cause of cockayne syndrome neurological disease. Proc. Natl Acad. Sci. Usa. 111, 14454–14459 (2014). (PMID: 25249633421003710.1073/pnas.1412569111) ; Vélez-Cruz, R. & Egly, J. M. Cockayne syndrome group B (CSB) protein: At the crossroads of transcriptional networks. Mech. Ageing Dev. 134, 234–242 (2013). (PMID: 2356242510.1016/j.mad.2013.03.004) ; Sabatella, M. et al. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res. 46, 9563–9577 (2018). (PMID: 30165384618213110.1093/nar/gky774) ; Lans, H. & Vermeulen, W. Tissue specific response to DNA damage: C. elegans as role model. DNA Repair (Amst.) 32, 141–148 (2015). (PMID: 2595748810.1016/j.dnarep.2015.04.025) ; Hoogstraten, D. et al. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol. Cell 10, 1163–1174 (2002). (PMID: 1245342310.1016/S1097-2765(02)00709-8) ; Vermeulen, W. Dynamics of mammalian NER proteins. DNA Repair (Amst.) 10, 760–771 (2011). (PMID: 2155032010.1016/j.dnarep.2011.04.015) ; Fassihi, H. et al. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect. Proc. Natl Acad. Sci. Usa. 113, E1236–E1245 (2016). (PMID: 26884178478061810.1073/pnas.1519444113) ; Kashiyama, K. et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet. 92, 807–819 (2013). (PMID: 23623389364463210.1016/j.ajhg.2013.04.007) ; Sijbers, A. M. et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811–822 (1996). (PMID: 879782710.1016/S0092-8674(00)80155-5) ; Ahmad, A. et al. Mislocalization of XPF-ERCC1 nuclease contributes to reduced DNA repair in XP-F patients. PLoS Genet 6, e1000871 (2010). (PMID: 20221251283266910.1371/journal.pgen.1000871) ; Jia, N. et al. A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents. Nat. Protoc. 10, 12–24 (2015). (PMID: 2547402910.1038/nprot.2014.194) ; Llerena Schiffmacher, D. A. et al. Live cell transcription-coupled nucleotide excision repair dynamics revisited. DNA Repair (Amst.) 130, 103566 (2023). (PMID: 3771619210.1016/j.dnarep.2023.103566) ; Geijer, M. E. et al. Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nat. Cell Biol. 23, 608–619 (2021). (PMID: 34108662761121810.1038/s41556-021-00692-z) ; Kim, D. E. et al. Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell 19, e13072 (2020). (PMID: 3173798510.1111/acel.13072) ; Harada, Y.-N. et al. Postnatal Growth Failure, Short Life Span, and Early Onset of Cellular Senescence and Subsequent Immortalization in Mice Lacking the Xeroderma Pigmentosum Group G Gene. Mol. Cell. Biol. 19, 2366 (1999). (PMID: 100229228402810.1128/MCB.19.3.2366) ; Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006). (PMID: 1718331410.1038/nature05456) ; Weeda, G. et al. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr. Biol. 7, 427–439 (1997). (PMID: 919724010.1016/S0960-9822(06)00190-4) ; Vries, A. et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377, 169–173 (1995). (PMID: 767508610.1038/377169a0) ; Nakane, H. et al. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature 377, 165–168 (1995). (PMID: 767508510.1038/377165a0) ; Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066 (2012). (PMID: 22496421336417210.1091/mbc.e11-10-0884) ; Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu. Rev. Pathol.: Mech. Dis. 5, 99–118 (2010). (PMID: 10.1146/annurev-pathol-121808-102144) ; Ewald, J. A., Desotelle, J. A., Wilding, G. & Jarrard, D. F. Therapy-induced senescence in cancer. J. Natl Cancer Inst. 102, 1536–1546 (2010). (PMID: 20858887295742910.1093/jnci/djq364) ; Lans, H. & Vermeulen, W. Nucleotide excision repair in caenorhabditis elegans. Mol. Biol. Int. 2011, 1–12 (2011). (PMID: 10.4061/2011/542795) ; Lans, H. et al. Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during developm. PLoS Genet 6, 41 (2010). (PMID: 10.1371/journal.pgen.1000941) ; Astin, J. W., O’Neil, N. J. & Kuwabara, P. E. Nucleotide excision repair and the degradation of RNA pol II by the Caenorhabditis elegans XPA and Rsp5 orthologues, RAD-3 and WWP-1. DNA Repair (Amst.) 7, 267–280 (2008). (PMID: 1805377610.1016/j.dnarep.2007.10.004) ; Lans, H. et al. DNA damage leads to progressive replicative decline but extends the life span of long-lived mutant animals. Cell Death Differ. 20, 1709–1718 (2013). (PMID: 24013725382459210.1038/cdd.2013.126) ; Zhang, L., Ward, J. D., Cheng, Z. & Dernburg, A. F. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Dev 142, 4374–4384 (2015). ; Thijssen, K. L. et al. C. elegans TFIIH subunit GTF-2H5/TTDA is a non-essential transcription factor indispensable for DNA repair. Commun. Biol. 4, 1336 (2021). (PMID: 34824371861709410.1038/s42003-021-02875-8) ; Sabatella, M., Thijssen, K. L., Davó-Martínez, C., Vermeulen, W. & Lans, H. Tissue-specific DNA repair activity of ERCC-1/XPF-1. Cell Rep. 34, 108608 (2021). (PMID: 3344014610.1016/j.celrep.2020.108608) ; Hedgecock, E. M., Culotti, J. G., Thomson, J. N. & Perkins, L. A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111, 158–170 (1985). (PMID: 392841810.1016/0012-1606(85)90443-9) ; van der Woude, M. & Lans, H. C. elegans survival assays to discern global and transcription-coupled nucleotide excision repair. STAR Protoc. 2, 100586 (2021). (PMID: 34151304819285510.1016/j.xpro.2021.100586) ; Theil, A. F. et al. Disruption of TTDA results in complete nucleotide excision repair deficiency and embryonic lethality. PLoS Genet 9, e1003431 (2013). (PMID: 23637614363010210.1371/journal.pgen.1003431) ; Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 36, 714–719 (2004). (PMID: 1522092110.1038/ng1387) ; Coin, F. et al. p8/TTD-A as a repair-specific TFIIH subunit. Mol. Cell 21, 215–226 (2006). (PMID: 1642701110.1016/j.molcel.2005.10.024) ; Enzlin, J. H. & Schärer, O. D. The active site of the DNA repair endonuclease XPF–ERCC1 forms a highly conserved nuclease motif. EMBO J. 21, 2045–2053 (2002). (PMID: 1195332412596710.1093/emboj/21.8.2045) ; van der Woude, M., Davó-Martínez, C., Thijssen, K. L., Vermeulen, W. & Lans, H. Recovery of protein synthesis to assay DNA repair activity in transcribed genes in living cells and tissues. Nucleic Acids Res 1, 13–14 (2023). ; Jaspers, N. G. J. et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair (Amst.) 1, 1027–1038 (2002). (PMID: 1253101210.1016/S1568-7864(02)00166-0) ; Yokoi, M. et al. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J. Biol. Chem. 275, 9870–9875 (2000). (PMID: 1073414310.1074/jbc.275.13.9870) ; Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001). (PMID: 1151137410.1016/S1097-2765(01)00281-7) ; Ziani, S. et al. Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin. J. Cell Biol. 206, 589–598 (2014). (PMID: 25154395415114410.1083/jcb.201403096) ; Riedl, T., Hanaoka, F. & Egly, J. M. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 22, 5293–5303 (2003). (PMID: 1451726620447210.1093/emboj/cdg489) ; Tapias, A. et al. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J. Biol. Chem. 279, 19074–19083 (2004). (PMID: 1498108310.1074/jbc.M312611200) ; Lainé, J.-P. & Egly, J.-M. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J. 25, 387–397 (2006). (PMID: 16407975138351610.1038/sj.emboj.7600933) ; Vermeulen, W. et al. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nat. Genet. 26, 307–313 (2000). (PMID: 1106246910.1038/81603) ; Botta, E. et al. Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Hum. Mol. Genet. 11, 2919–2928 (2002). (PMID: 1239380310.1093/hmg/11.23.2919) ; Kim, J. et al. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature https://doi.org/10.1038/s41586-023-05959-z (2023). ; Kim, M. et al. Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair. Proc. Natl Acad. Sci. USA 119, e2207408119 (2022). (PMID: 35969784940723410.1073/pnas.2207408119) ; Kappenberger, J. et al. How to limit the speed of a motor: the intricate regulation of the XPB ATPase and translocase in TFIIH. Nucleic Acids Res 48, 12282–12296 (2020). (PMID: 33196848770807810.1093/nar/gkaa911) ; Bralić, A. et al. A scanning-to-incision switch in TFIIH-XPG induced by DNA damage licenses nucleotide excision repair. Nucleic Acids Res 51, 1019–1033 (2023). (PMID: 3647760910.1093/nar/gkac1095) ; Klein Douwel, D., Hoogenboom, W. S., Boonen, R. A. & Knipscheer, P. Recruitment and positioning determine the specific role of the XPF-ERCC1 endonuclease in interstrand crosslink repair. EMBO J. 36, 2034–2046 (2017). (PMID: 28292785551000410.15252/embj.201695223) ; Theron, T. et al. Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome. Mol. Cell. Biol. 25, 8368–8378 (2005). (PMID: 16135823123431910.1128/MCB.25.18.8368-8378.2005) ; Andressoo, J. O. et al. An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 10, 121–132 (2006). (PMID: 1690461110.1016/j.ccr.2006.05.027) ; Godon, C. et al. Generation of DNA single-strand displacement by compromised nucleotide excision repair. EMBO J. 31, 3550–3563 (2012). (PMID: 22863773343377910.1038/emboj.2012.193) ; Nakazawa, Y. et al. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat. Genet. 44, 586–592 (2012). (PMID: 2246661010.1038/ng.2229) ; Jaspers, N. G. J. et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio- skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am. J. Hum. Genet. 80, 457–466 (2007). (PMID: 17273966182111710.1086/512486) ; Niedernhofer, L. J. Nucleotide excision repair deficient mouse models and neurological disease. DNA Repair (Amst.) 7, 1180–1189 (2008). (PMID: 1827243610.1016/j.dnarep.2007.12.006) ; Bhagwat, N. et al. XPF-ERCC1 participates in the fanconi anemia pathway of cross-link repair. Mol. Cell. Biol. 29, 6427–6437 (2009). (PMID: 19805513278687610.1128/MCB.00086-09) ; Klein Douwel, D. et al. XPF-ERCC1 Acts in Unhooking DNA Interstrand Crosslinks in Cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54, 460–471 (2014). (PMID: 2472632510.1016/j.molcel.2014.03.015) ; Bogliolo, M. et al. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet. 92, 800–806 (2013). (PMID: 23623386364463010.1016/j.ajhg.2013.04.002) ; Trego, K. S. et al. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability. Mol. Cell 61, 535–546 (2016). (PMID: 26833090476130210.1016/j.molcel.2015.12.026) ; Sollier, J. et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56, 777–785 (2014). (PMID: 25435140427263810.1016/j.molcel.2014.10.020) ; Goulielmaki, E. et al. The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat. Commun. 12, 1–19 (2021). (PMID: 10.1038/s41467-021-23505-1) ; Cristini, A. et al. Dual Processing of R-Loops and Topoisomerase I Induces Transcription-Dependent DNA Double-Strand Breaks. Cell Rep. 28, 3167–3181.e6 (2019). (PMID: 31533039827495010.1016/j.celrep.2019.08.041) ; Moriel-Carretero, M., Herrera-Moyano, E. & Aguilera, A. A unified model for the molecular basis of Xeroderma pigmentosum -Cockayne Syndrome. Rare Dis. 3, e1079362 (2015). (PMID: 26460500458822510.1080/21675511.2015.1079362) ; Van Der Pluijm, I. et al. Impaired genome maintenance suppresses the growth hormone-insulin-like growth factor 1 axis in mice with cockayne syndrome. PLoS Biol. 5, 0023–0038 (2007). ; Shiomi, N. et al. Severe growth retardation and short life span of double-mutant mice lacking Xpa and exon 15 of Xpg. DNA Repair (Amst.) 4, 351–357 (2005). (PMID: 1566165810.1016/j.dnarep.2004.10.009) ; Murai, M. et al. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syndrome Group B DNA repair genes. Proc. Natl Acad. Sci. Usa. 98, 13379 (2001). (PMID: 116876256087910.1073/pnas.231329598) ; Andressoo, J.-O. et al. An Xpb mouse model for combined xeroderma pigmentosum and cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol. Cell. Biol. 29, 1276–1290 (2009). (PMID: 1911455710.1128/MCB.01229-08) ; Brace, L. E. et al. Lifespan extension by dietary intervention in a mouse model of Cockayne syndrome uncouples early postnatal development from segmental progeria. Aging Cell 12, 1144–1147 (2013). (PMID: 2389566410.1111/acel.12142) ; Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014). (PMID: 25075903448624510.1038/nmeth.3047) ; Yusa, K., Zhou, L., Li, M. A., Bradley, A. & Craig, N. L. A hyperactive piggyBac transposase for mammalian applications. Proc. Natl Acad. Sci. Usa. 108, 1531–1536 (2011). (PMID: 21205896302977310.1073/pnas.1008322108) ; Zelensky, A. N., Schimmel, J., Kool, H., Kanaar, R. & Tijsterman, M. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. Nat. Commun. 8, 1–7 (2017). (PMID: 10.1038/s41467-017-00124-3) ; Kamiyama, D. et al. Versatile protein tagging in cells with split fluorescent protein. Nat. Commun. 7, 11046 (2016). (PMID: 26988139480207410.1038/ncomms11046) ; Bindels, D. S. et al. MScarlet: A bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2016). (PMID: 2786981610.1038/nmeth.4074) ; Houtsmuller, A. B. & Vermeulen, W. Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem. Cell Biol. 115, 13–21 (2001). (PMID: 1121960310.1007/s004180000234) ; Ribeiro-Silva, C. et al. DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1. Nat. Commun. 9, 4067 (2018). (PMID: 30287812617227810.1038/s41467-018-06402-y) ; Linkert, M. et al. Metadata matters: Access to image data in the real world. J. Cell Biol. 189, 777–782 (2010). (PMID: 20513764287893810.1083/jcb.201004104)
  • Grant Information: 15-1274 United Kingdom AICR_ Worldwide Cancer Research
  • Substance Nomenclature: 148710-81-0 (Transcription Factor TFIIH) ; 0 (DNA-Binding Proteins) ; EC 3.1.- (Endonucleases) ; 0 (xeroderma pigmentosum group F protein) ; 0 (Caenorhabditis elegans Proteins) ; 0 (Xeroderma Pigmentosum Group A Protein) ; 0 (DNA excision repair protein ERCC-5) ; 0 (Transcription Factors) ; EC 3.1.- (ERCC1 protein, human) ; 0 (XPA protein, human) ; 0 (Nuclear Proteins)
  • Entry Date(s): Date Created: 20240425 Date Completed: 20240425 Latest Revision: 20240428
  • Update Code: 20240429
  • PubMed Central ID: PMC11045817

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -