Zum Hauptinhalt springen

The clinical importance of suspected non-Alzheimer disease pathophysiology.

Vos, SJB ; Delvenne, A ; et al.
In: Nature reviews. Neurology, Jg. 20 (2024-06-01), Heft 6, S. 337-346
academicJournal

Titel:
The clinical importance of suspected non-Alzheimer disease pathophysiology.
Autor/in / Beteiligte Person: Vos, SJB ; Delvenne, A ; Jack CR Jr ; Thal, DR ; Visser, PJ
Zeitschrift: Nature reviews. Neurology, Jg. 20 (2024-06-01), Heft 6, S. 337-346
Veröffentlichung: London : Nature Pub. Group, 2024
Medientyp: academicJournal
ISSN: 1759-4766 (electronic)
DOI: 10.1038/s41582-024-00962-y
Schlagwort:
  • Humans
  • Alzheimer Disease physiopathology
  • Alzheimer Disease diagnosis
  • Alzheimer Disease metabolism
  • tau Proteins metabolism
  • Neurodegenerative Diseases physiopathology
  • Neurodegenerative Diseases diagnosis
  • Cognitive Dysfunction physiopathology
  • Cognitive Dysfunction diagnosis
  • Cognitive Dysfunction etiology
  • Clinical Relevance
  • Biomarkers metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Rev Neurol] 2024 Jun; Vol. 20 (6), pp. 337-346. <i>Date of Electronic Publication: </i>2024 May 09.
  • MeSH Terms: Biomarkers* / metabolism ; Humans ; Alzheimer Disease / physiopathology ; Alzheimer Disease / diagnosis ; Alzheimer Disease / metabolism ; tau Proteins / metabolism ; Neurodegenerative Diseases / physiopathology ; Neurodegenerative Diseases / diagnosis ; Cognitive Dysfunction / physiopathology ; Cognitive Dysfunction / diagnosis ; Cognitive Dysfunction / etiology ; Clinical Relevance
  • References: Glenner, G. G. & Wong, C. W. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135 (1984). (PMID: 623680510.1016/0006-291X(84)91209-9) ; Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002). (PMID: 1213077310.1126/science.1072994) ; Jack, C. R. Jr et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 257–262 (2011). (PMID: 2151424710.1016/j.jalz.2011.03.004) ; Jack, C. R. Jr et al. An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann. Neurol. 71, 765–775 (2012). (PMID: 22488240358622310.1002/ana.22628) ; Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Assocation workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011). (PMID: 2151424810.1016/j.jalz.2011.03.003) ; Jack, C. R. Jr et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010). (PMID: 20083042281984010.1016/S1474-4422(09)70299-6) ; Power, M. C. et al. Combined neuropathological pathways account for age-related risk of dementia. Ann. Neurol. 84, 10–22 (2018). (PMID: 29944741611951810.1002/ana.25246) ; Kawas, C. H. et al. Multiple pathologies are common and related to dementia in the oldest-old: the 90+ study. Neurology 85, 535–542 (2015). (PMID: 26180144454024610.1212/WNL.0000000000001831) ; Knopman, D. S. et al. Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology 78, 1576–1582 (2012). (PMID: 22551733334884810.1212/WNL.0b013e3182563bbe) ; Blennow, K. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx 1, 213–225 (2004). (PMID: 1571702253492910.1602/neurorx.1.2.213) ; Hansson, O. et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 14, 1470–1481 (2018). (PMID: 2949917110.1016/j.jalz.2018.01.010) ; Klunk, W. E. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004). (PMID: 1499180810.1002/ana.20009) ; Schwarz, C. G. et al. Considerations for performing level-2 Centiloid transformations for amyloid PET SUVR values. Sci. Rep. 8, 7421 (2018). (PMID: 29743601594352110.1038/s41598-018-25459-9) ; Chien, D. T. et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J. Alzheimers Dis. 34, 457–468 (2013). (PMID: 2323487910.3233/JAD-122059) ; Jack, C. R. Jr et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016). (PMID: 27371494497066410.1212/WNL.0000000000002923) ; Jack, C. R. et al. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50-95 years: a cross-sectional study. Lancet Neurol. 16, 435–444 (2017). (PMID: 28456479551653410.1016/S1474-4422(17)30077-7) ; Jack, C. R. Jr et al. Suspected non-Alzheimer disease pathophysiology – concept and controversy. Nat. Rev. Neurol. 12, 117–124 (2016). (PMID: 26782335478425710.1038/nrneurol.2015.251) ; Dodich, A. et al. The A/T/N model applied through imaging biomarkers in a memory clinic. Eur. J. Nucl. Med. Mol. Imaging 47, 247–255 (2020). (PMID: 3179257310.1007/s00259-019-04536-9) ; Ebenau, J. L. et al. ATN classification and clinical progression in subjective cognitive decline: the SCIENCe project. Neurology 95, e46–e58 (2020). (PMID: 32522798737137610.1212/WNL.0000000000009724) ; Ingala, S. et al. Application of the ATN classification scheme in a population without dementia: findings from the EPAD cohort. Alzheimers Dement. 17, 1189–1204 (2021). (PMID: 3381174210.1002/alz.12292) ; Ekman, U., Ferreira, D. & Westman, E. The A/T/N biomarker scheme and patterns of brain atrophy assessed in mild cognitive impairment. Sci. Rep. 8, 8431 (2018). (PMID: 29849029597671310.1038/s41598-018-26151-8) ; Delmotte, K., Schaeverbeke, J., Poesen, K. & Vandenberghe, R. Prognostic value of amyloid/tau/neurodegeneration (ATN) classification based on diagnostic cerebrospinal fluid samples for Alzheimer’s disease. Alzheimers Res. Ther. 13, 84 (2021). (PMID: 33879243805919710.1186/s13195-021-00817-4) ; Janelidze, S. et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun. 11, 1683 (2020). (PMID: 32246036712521810.1038/s41467-020-15436-0) ; Barthelemy, N. R. et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res. Ther. 12, 26 (2020). (PMID: 32183883707945310.1186/s13195-020-00596-4) ; Soldan, A. et al. ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes. Neurology 92, E1567–E1579 (2019). (PMID: 30842300644844910.1212/WNL.0000000000007248) ; Gordon, B. A. et al. Longitudinal β-amyloid deposition and hippocampal volume in preclinical Alzheimer disease and suspected non-Alzheimer disease pathophysiology. JAMA Neurol. 73, 1192–1200 (2016). (PMID: 27548756523738110.1001/jamaneurol.2016.2642) ; Vos, S. J. et al. Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain 138, 1327–1338 (2015). (PMID: 25693589501393010.1093/brain/awv029) ; Chung, J. K. et al. The effects of cortical hypometabolism and hippocampal atrophy on clinical trajectories in mild cognitive impairment with suspected non-Alzheimer’s pathology: a brief report. J. Alzheimers Dis. 60, 341–347 (2017). (PMID: 2882617810.3233/JAD-170098) ; Wisse, L. E. M. et al. Suspected non-AD pathology in mild cognitive impairment. Neurobiol. Aging 36, 3152–3162 (2015). (PMID: 26422359464177410.1016/j.neurobiolaging.2015.08.029) ; Altomare, D. et al. Applying the ATN scheme in a memory clinic population: the ABIDE project. Neurology 93, e1635–e1646 (2019). (PMID: 3159771010.1212/WNL.0000000000008361) ; Vos, S. J. B. et al. NIA-AA staging of preclinical Alzheimer disease: discordance and concordance of CSF and imaging biomarkers. Neurobiol. Aging 44, 1–8 (2016). (PMID: 27318129491303910.1016/j.neurobiolaging.2016.03.025) ; Baldeiras, I. et al. Addition of the Aβ42/40 ratio to the cerebrospinal fluid biomarker profile increases the predictive value for underlying Alzheimer’s disease dementia in mild cognitive impairment. Alzheimers Res. Ther. 10, 33 (2018). (PMID: 29558986586163410.1186/s13195-018-0362-2) ; Soldan, A. et al. Hypothetical preclinical Alzheimer disease groups and longitudinal cognitive change. JAMA Neurol. 73, 698–705 (2016). (PMID: 27064267517332710.1001/jamaneurol.2016.0194) ; Toledo, J. B. et al. Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathol. Commun. 2, 26 (2014). (PMID: 24602322400825810.1186/2051-5960-2-26) ; Burnham, S. C. et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 15, 1044–1053 (2016). (PMID: 2745047110.1016/S1474-4422(16)30125-9) ; Bos, I. et al. Vascular risk factors are associated with longitudinal changes in cerebrospinal fluid tau markers and cognition in preclinical Alzheimer’s disease. Alzheimers Dement. 15, 1149–1159 (2019). (PMID: 3137857510.1016/j.jalz.2019.04.015) ; Calvin, C. M. et al. Prediction of Alzheimer’s disease biomarker status defined by the ‘ATN framework’ among cognitively healthy individuals: results from the EPAD longitudinal cohort study. Alzheimers Res. Ther. 12, 143 (2020). (PMID: 33168064765016910.1186/s13195-020-00711-5) ; Knopman, D. S. et al. Brain injury biomarkers are not dependent on β-amyloid in normal elderly. Ann. Neurol. 73, 472–480 (2013). (PMID: 23424032366040810.1002/ana.23816) ; Delvenne, A. et al. Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer’s disease pathophysiology. Alzheimers Dement. 19, 807–820 (2023). (PMID: 10.1002/alz.12713) ; Alcolea, D. et al. Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology 85, 626–633 (2015). (PMID: 2618013910.1212/WNL.0000000000001859) ; Hohman, T. J. et al. APOE allele frequencies in suspected non-amyloid pathophysiology (SNAP) and the prodromal stages of Alzheimer’s disease. PLoS ONE 12, e0188501 (2017). (PMID: 29190651570877710.1371/journal.pone.0188501) ; Schreiber, S. et al. Alzheimer disease signature neurodegeneration and APOE genotype in mild cognitive impairment with suspected non-Alzheimer disease pathophysiology. JAMA Neurol. 74, 650–659 (2017). (PMID: 28319241582221010.1001/jamaneurol.2016.5349) ; Thal, D. R. et al. Estimation of amyloid distribution by [ 18 F]flutemetamol PET predicts the neuropathological phase of amyloid β-protein deposition. Acta Neuropathol. 136, 557–567 (2018). (PMID: 30123935613294410.1007/s00401-018-1897-9) ; La Joie, R. et al. Multisite study of the relationships between antemortem [ 11 C]PIB-PET Centiloid values and postmortem measures of Alzheimer’s disease neuropathology. Alzheimers Dement. 15, 205–216 (2019). (PMID: 3034718810.1016/j.jalz.2018.09.001) ; Nakamura, A. et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554, 249–254 (2018). (PMID: 2942047210.1038/nature25456) ; Willemse, E. A. J. et al. Comparing CSF amyloid-β biomarker ratios for two automated immunoassays, Elecsys and Lumipulse, with amyloid PET status. Alzheimers Dement. 13, e12182 (2021). ; Lowe, V. J. et al. Neuroimaging correlates with neuropathologic schemes in neurodegenerative disease. Alzheimers Dement. 15, 927–939 (2019). (PMID: 3117502510.1016/j.jalz.2019.03.016) ; Vos, S. J. et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 12, 957–965 (2013). (PMID: 24012374390467810.1016/S1474-4422(13)70194-7) ; Wisse, L. E. M. et al. Pathological drivers of neurodegeneration in suspected non-Alzheimer’s disease pathophysiology. Alzheimers Res. Ther. 13, 100 (2021). (PMID: 33990226812254910.1186/s13195-021-00835-2) ; Thal, D. R., Rub, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002). (PMID: 1208487910.1212/WNL.58.12.1791) ; Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014). (PMID: 25348064425784210.1007/s00401-014-1349-0) ; Duyckaerts, C. et al. PART is part of Alzheimer disease. Acta Neuropathol. 129, 749–756 (2015). (PMID: 25628035440534910.1007/s00401-015-1390-7) ; Thal, D. R. & Tome, S. O. The central role of tau in Alzheimer’s disease: from neurofibrillary tangle maturation to the induction of cell death. Brain Res. Bull. 190, 204–217 (2022). (PMID: 3624458110.1016/j.brainresbull.2022.10.006) ; Walkiewicz, G. et al. Primary retinal tauopathy: a tauopathy with a distinct molecular pattern. Alzheimers Dement. 20, 330–340 (2024). (PMID: 3761527510.1002/alz.13424) ; Shi, Y. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607. Acta Neuropathol. 141, 697–708 (2021). (PMID: 33723967804386410.1007/s00401-021-02294-3) ; Kaufman, S. K., Del Tredici, K., Thomas, T. L., Braak, H. & Diamond, M. I. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART. Acta Neuropathol. 136, 57–67 (2018). (PMID: 29752551601509810.1007/s00401-018-1855-6) ; Aragao Gomes, L. et al. Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formation. Acta Neuropathol. 141, 173–192 (2021). (PMID: 3342793810.1007/s00401-020-02251-6) ; Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011). (PMID: 2200242210.1097/NEN.0b013e318232a379) ; Santa-Maria, I. et al. The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathol. 124, 693–704 (2012). (PMID: 22802095360847510.1007/s00401-012-1017-1) ; Farrell, K. et al. Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathol. 143, 33–53 (2022). (PMID: 3471976510.1007/s00401-021-02379-z) ; Teylan, M. et al. Clinical diagnoses among individuals with primary age-related tauopathy versus Alzheimer’s neuropathology. Lab. Invest. 99, 1049–1055 (2019). (PMID: 30710118660947810.1038/s41374-019-0186-0) ; Glenner, G. G. & Wong, C. W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984). (PMID: 637566210.1016/S0006-291X(84)80190-4) ; Thal, D. R., Ghebremedhin, E., Orantes, M. & Wiestler, O. D. Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J. Neuropathol. Exp. Neurol. 62, 1287–1301 (2003). (PMID: 1469270410.1093/jnen/62.12.1287) ; Thal, D. R. et al. Pathology of clinical and preclinical Alzheimer’s disease. Eur. Arch. Psychiatry Clin. Neurosci. 263, S137–S145 (2013). (PMID: 2407789010.1007/s00406-013-0449-5) ; Charidimou, A. et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 21, 714–725 (2022). (PMID: 35841910938945210.1016/S1474-4422(22)00208-3) ; Boyle, P. A. et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 85, 1930–1936 (2015). (PMID: 26537052466412510.1212/WNL.0000000000002175) ; Hyman, B. T. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1–13 (2012). (PMID: 2226558710.1016/j.jalz.2011.10.007) ; Ellis, R. J. et al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, Part XV. Neurology 46, 1592–1596 (1996). (PMID: 864955410.1212/WNL.46.6.1592) ; Selnes, O. A. & Vinters, H. V. Vascular cognitive impairment. Nat. Clin. Pract. Neurol. 2, 538–547 (2006). (PMID: 1699082710.1038/ncpneuro0294) ; Thal, D. R. et al. Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances. Neurobiol. Aging 30, 1936–1948 (2009). (PMID: 1835913110.1016/j.neurobiolaging.2008.01.017) ; Hecht, M., Kramer, L. M., von Arnim, C. A. F., Otto, M. & Thal, D. R. Capillary cerebral amyloid angiopathy in Alzheimer’s disease: association with allocortical/hippocampal microinfarcts and cognitive decline. Acta Neuropathol. 135, 681–694 (2018). (PMID: 2957459110.1007/s00401-018-1834-y) ; Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011). (PMID: 21778438377866910.1161/STR.0b013e3182299496) ; Skrobot, O. A. et al. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment. Brain 139, 2957–2969 (2016). (PMID: 2759111310.1093/brain/aww214) ; Vinters, H. V. et al. Neuropathologic substrates of ischemic vascular dementia. J. Neuropathol. Exp. Neurol. 59, 931–945 (2000). (PMID: 1108957110.1093/jnen/59.11.931) ; Launer, L. J., Hughes, T. M. & White, L. R. Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging Study Autopsy Study. Ann. Neurol. 70, 774–780 (2011). (PMID: 22162060324100510.1002/ana.22520) ; Thal, D. R. et al. Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol. 122, 577–589 (2011). (PMID: 2193563710.1007/s00401-011-0871-6) ; Simchowicz, T. in Histologie und histopathologische Arbeiten über die Großhirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geistekrankheiten Vol. 4 (eds Nissl, F. & Alzheimer, A.) 267–444 (Fischer, 1911). ; Ball, M. J. & Lo, P. Granulovacuolar degeneration in the ageing brain and in dementia. J. Neuropathol. Exp. Neurol. 36, 474–487 (1977). (PMID: 87062210.1097/00005072-197705000-00006) ; Funk, K. E., Mrak, R. E. & Kuret, J. Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles. Neuropathol. Appl. Neurobiol. 37, 295–306 (2011). (PMID: 20946470303797610.1111/j.1365-2990.2010.01135.x) ; Kohler, C. Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology. Acta Neuropathol. 132, 339–359 (2016). (PMID: 2706226010.1007/s00401-016-1562-0) ; Koper, M. J. et al. Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease. Acta Neuropathol. 139, 463–484 (2020). (PMID: 3180223710.1007/s00401-019-02103-y) ; Wiersma, V. I. et al. Granulovacuolar degeneration bodies are neuron-selective lysosomal structures induced by intracellular tau pathology. Acta Neuropathol. 138, 943–970 (2019). (PMID: 31456031685149910.1007/s00401-019-02046-4) ; Balusu, S. et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science 381, 1176–1182 (2023). (PMID: 37708272761523610.1126/science.abp9556) ; Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019). (PMID: 30948788679684510.1038/s41422-019-0164-5) ; Koper, M. J. et al. LATE-NC aggravates GVD-mediated necroptosis in Alzheimer’s disease. Acta Neuropathol. Commun. 10, 128 (2022). (PMID: 36057624944110010.1186/s40478-022-01432-6) ; Josephs, K. A. et al. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 131, 571–585 (2016). (PMID: 26810071594669210.1007/s00401-016-1537-1) ; Joachim, C. L., Morris, J. H. & Selkoe, D. J. Clinically diagnosed Alzheimer’s disease: autopsy results in 150 cases. Ann. Neurol. 24, 50–56 (1988). (PMID: 341520010.1002/ana.410240110) ; Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527 (2019). (PMID: 31039256653684910.1093/brain/awz099) ; Nelson, P. T. et al. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol. 145, 159–173 (2023). (PMID: 3651206110.1007/s00401-022-02524-2) ; Amador-Ortiz, C. et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann. Neurol. 61, 435–445 (2007). (PMID: 17469117267720410.1002/ana.21154) ; Tome, S. O. et al. TDP-43 pathology is associated with increased tau burdens and seeding. Mol. Neurodegener. 18, 71 (2023). (PMID: 377778061054419210.1186/s13024-023-00653-0) ; Braun, D. J. et al. Early chronic suppression of microglial p38ɑ in a model of Alzheimer’s disease does not significantly alter amyloid-associated neuropathology. PLoS ONE 18, e0286495 (2023). (PMID: 372568811023177310.1371/journal.pone.0286495) ; McAleese, K. E. et al. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 27, 472–479 (2017). (PMID: 2749526710.1111/bpa.12424) ; Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010). (PMID: 1992442410.1007/s00401-009-0612-2) ; Braak, H. & Braak, E. Argyrophilic grain disease: frequency of occurrence in different age categories and neuropathological diagnostic criteria. J. Neural Transm. 105, 801–819 (1998). (PMID: 986932010.1007/s007020050096) ; Thal, D. R. et al. The impact of argyrophilic grain disease on the development of dementia and its relationship to concurrent Alzheimer’s disease-related pathology. Neuropathol. Appl. Neurobiol. 31, 270–279 (2005). (PMID: 1588506410.1111/j.1365-2990.2005.00635.x) ; Thal, D. R. et al. Frontotemporal lobar degeneration FTLD-tau: preclinical lesions, vascular, and Alzheimer-related co-pathologies. J. Neural Transm. 122, 1007–1018 (2015). (PMID: 2555695010.1007/s00702-014-1360-6) ; Josephs, K. A. et al. Argyrophilic grains: a distinct disease or an additive pathology? Neurobiol. Aging 29, 566–573 (2008). (PMID: 1718878310.1016/j.neurobiolaging.2006.10.032) ; Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003). (PMID: 1249895410.1016/S0197-4580(02)00065-9) ; Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R. & Braak, H. Where does Parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61, 413–426 (2002). (PMID: 1203026010.1093/jnen/61.5.413) ; Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013). (PMID: 23686809378507610.1002/ana.23937) ; Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006). (PMID: 1702365910.1126/science.1134108) ; Van Schoor, E. et al. Necrosome-positive granulovacuolar degeneration is associated with TDP-43 pathological lesions in the hippocampus of ALS/FTLD cases. Neuropathol. Appl. Neurobiol. 47, 328–345 (2020). (PMID: 3294904710.1111/nan.12668) ; Fernandes Gomes, B. et al. ɑ-Synuclein seed amplification assay as a diagnostic tool for parkinsonian disorders. Parkinsonism Relat. Disord. 117, 105807 (2023). (PMID: 3759170910.1016/j.parkreldis.2023.105807) ; Shen, X. N. et al. Plasma amyloid, tau, and neurodegeneration biomarker profiles predict Alzheimer’s disease pathology and clinical progression in older adults without dementia. Alzheimers Dement. 12, e12104 (2020). ; Cummings, J. et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement. 9, e12385 (2023). (PMID: 10.1002/trc2.12385) ; Nelson, P. T. et al. Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol. 144, 27–44 (2022). (PMID: 35697880955293810.1007/s00401-022-02444-1) ; Hamilton, R. L. Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using ɑ-synuclein immunohistochemistry. Brain Pathol. 10, 378–384 (2000). (PMID: 1088565610.1111/j.1750-3639.2000.tb00269.x) ; Lippa, C. F. et al. Lewy bodies contain altered α-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am. J. Pathol. 153, 1365–1370 (1998). (PMID: 9811326185339110.1016/S0002-9440(10)65722-7) ; Uchikado, H., Lin, W. L., DeLucia, M. W. & Dickson, D. W. Alzheimer disease with amygdala Lewy bodies: a distinct form of α-synucleinopathy. J. Neuropathol. Exp. Neurol. 65, 685–697 (2006). (PMID: 1682595510.1097/01.jnen.0000225908.90052.07) ; Vonsattel, J. P. et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann. Neurol. 30, 637–649 (1991). (PMID: 176389010.1002/ana.410300503) ; Mandybur, T. I. Cerebral amyloid angiopathy: the vascular pathology and complications. J. Neuropathol. Exp. Neurol. 45, 79–90 (1986). (PMID: 394132810.1097/00005072-198601000-00007) ; Dickson, D. W., Kouri, N., Murray, M. E. & Josephs, K. A. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J. Mol. Neurosci. 45, 384–389 (2011). (PMID: 21720721320812810.1007/s12031-011-9589-0) ; Jansen, W. J. et al. Prevalence estimates of amyloid abnormality across the Alzheimer disease clinical spectrum. JAMA Neurol. 79, 228–243 (2022). (PMID: 3509950910.1001/jamaneurol.2021.5216) ; Mormino, E. C. et al. Heterogeneity in suspected non-Alzheimer disease pathophysiology among clinically normal older individuals. JAMA Neurol. 73, 1185–1191 (2016). (PMID: 27548655526652210.1001/jamaneurol.2016.2237) ; Murray, M. E. et al. Clinicopathologic and 11 C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain 138, 1370–1381 (2015). (PMID: 25805643440719010.1093/brain/awv050) ; Tan, M.-S. et al. Longitudinal trajectories of Alzheimer’s ATN biomarkers in elderly persons without dementia. Alzheimers Res. Ther. 12, 55 (2020). (PMID: 32393375721671410.1186/s13195-020-00621-6)
  • Substance Nomenclature: 0 (Biomarkers) ; 0 (tau Proteins)
  • Entry Date(s): Date Created: 20240509 Date Completed: 20240604 Latest Revision: 20240613
  • Update Code: 20240614

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -