Zum Hauptinhalt springen

Novel carbamodithioate regulates cellular hypoxia through chemical activation of prolyl hydroxylase-2 for breast cancer chemoprevention.

Rastogi, S ; Ansari, MN ; et al.
In: Chemical biology & drug design, Jg. 103 (2024-05-01), Heft 5, S. e14531
Online academicJournal

Titel:
Novel carbamodithioate regulates cellular hypoxia through chemical activation of prolyl hydroxylase-2 for breast cancer chemoprevention.
Autor/in / Beteiligte Person: Rastogi, S ; Ansari, MN ; Saeedan, AS ; Yadav, S ; Kumar, D ; Singh, SK ; Mukerjee, A ; Singh, M ; Kaithwas, G
Link:
Zeitschrift: Chemical biology & drug design, Jg. 103 (2024-05-01), Heft 5, S. e14531
Veröffentlichung: Oxford : Wiley-Blackwell, 2006-, 2024
Medientyp: academicJournal
ISSN: 1747-0285 (electronic)
DOI: 10.1111/cbdd.14531
Schlagwort:
  • Humans
  • Female
  • Animals
  • Mice
  • Cell Hypoxia drug effects
  • Molecular Docking Simulation
  • Antineoplastic Agents pharmacology
  • Antineoplastic Agents chemistry
  • MCF-7 Cells
  • Cell Line, Tumor
  • NF-kappa B metabolism
  • Tirapazamine pharmacology
  • Tirapazamine chemistry
  • Tirapazamine metabolism
  • Breast Neoplasms metabolism
  • Breast Neoplasms pathology
  • Breast Neoplasms drug therapy
  • Breast Neoplasms prevention & control
  • Hypoxia-Inducible Factor-Proline Dioxygenases metabolism
  • Hypoxia-Inducible Factor-Proline Dioxygenases antagonists & inhibitors
  • Apoptosis drug effects
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Chem Biol Drug Des] 2024 May; Vol. 103 (5), pp. e14531.
  • MeSH Terms: Breast Neoplasms* / metabolism ; Breast Neoplasms* / pathology ; Breast Neoplasms* / drug therapy ; Breast Neoplasms* / prevention & control ; Hypoxia-Inducible Factor-Proline Dioxygenases* / metabolism ; Hypoxia-Inducible Factor-Proline Dioxygenases* / antagonists & inhibitors ; Apoptosis* / drug effects ; Humans ; Female ; Animals ; Mice ; Cell Hypoxia / drug effects ; Molecular Docking Simulation ; Antineoplastic Agents / pharmacology ; Antineoplastic Agents / chemistry ; MCF-7 Cells ; Cell Line, Tumor ; NF-kappa B / metabolism ; Tirapazamine / pharmacology ; Tirapazamine / chemistry ; Tirapazamine / metabolism
  • References: Adams, S. C., Schondorf, R., Benoit, J., & Kilgour, R. D. (2015). Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: A case‐controlled feasibility study. BMC Cancer, 15, 1–13. https://doi.org/10.1186/s12885‐015‐1418‐3. ; Akram, M., Iqbal, M., Daniyal, M., & Khan, A. U. (2017). Awareness and current knowledge of breast cancer. Biological Research, 50, 1–23. https://doi.org/10.1186/s40659‐017‐0140‐9. ; Altman, B. J., Stine, Z. E., & Dang, C. V. (2017). From Krebs to clinic: Glutamine metabolism to cancer therapy. Nature Reviews Cancer, 16, 619–634. https://doi.org/10.1038/nrc.2016.71. ; Berra, E., Benizri, E., Ginouvès, A., Volmat, V., Roux, D., & Pouysségur, J. (2003). HIF prolyl‐hydroxylase 2 is the key oxygen sensor setting low steady‐state levels of HIF‐1α in normoxia. The EMBO Journal, 22, 4082–4090. https://doi.org/10.1093/emboj/cdg392. ; Bordoli, M. R., Stiehl, D. P., Borsig, L., Kristiansen, G., Hausladen, S., Schraml, P., Wenger, R. H., & Camenisch, G. (2011). Prolyl‐4‐hydroxylase PHD2‐ and hypoxia‐inducible factor 2‐dependent regulation of amphiregulin contributes to breast tumorigenesis. Oncogene, 30, 548–560. https://doi.org/10.1038/onc.2010.433. ; Chan, D. A., Kawahara, T. L. A., Sutphin, P. D., Chang, H. Y., Chi, J. T., & Giaccia, A. J. (2009). Tumor vasculature is regulated by PHD2‐mediated angiogenesis and bone marrow‐derived cell recruitment. Cancer Cell, 15, 527–538. https://doi.org/10.1016/j.ccr.2009.04.010. ; Chaturvedi, M. M., Sung, B., Yadav, V. R., Kannappan, R., & Aggarwal, B. B. (2011). NF‐κB addiction and its role in cancer: One size does not fit all. Oncogene, 30, 1615–1630. https://doi.org/10.1038/onc.2010.566. ; Choi, H. J., Song, B. J., Gong, Y. D., Gwak, W. J., & Soh, Y. (2008). Rapid degradation of hypoxia‐inducible factor‐1α by KRH102053, a new activator of prolyl hydroxylase 2. British Journal of Pharmacology, 154, 114–125. https://doi.org/10.1038/bjp.2008.70. ; Cummins, E. P., Berra, E., Comerford, K. M., Ginouves, A., Fitzgerald, K. T., Seeballuck, F., Godson, C., Nielsen, J. E., Moynagh, P., Pouyssegur, J., & Taylor, C. T. (2006). Prolyl hydroxylase‐1 negatively regulates IκB kinase‐β, giving insight into hypoxia‐induced NFκB activity. Proceedings of the National Academy of Sciences of the United States of America, 103, 18154–18159. https://doi.org/10.1073/pnas.0602235103. ; de Saedeleer, C. J., Copetti, T., Porporato, P. E., Verrax, J., Feron, O., & Sonveaux, P. (2012). Lactate activates HIF‐1 in oxidative but not in Warburg‐phenotype human tumor cells. PLoS One, 7, e46571. https://doi.org/10.1371/journal.pone.0046571. ; Devi, U., Singh, M., Roy, S., Tripathi, A. C., Gupta, P. S., Saraf, S. K., Ansari, M. N., Saeedan, A. S., & Kaithwas, G. (2019). PHD‐2 activation: A novel strategy to control HIF‐1α and mitochondrial stress to modulate mammary gland pathophysiology in ER+ subtype. Naunyn‐Schmiedeberg's Archives of Pharmacology, 392, 1239–1256. https://doi.org/10.1007/s00210‐019‐01658‐7. ; Duan, W., Shen, X., Lei, J., Xu, Q., Yu, Y., Li, R., Wu, E., & Ma, Q. (2014). Hyperglycemia, a neglected factor during cancer progression. BioMed Research International, 2014, 461917. https://doi.org/10.1155/2014/461917. ; Eng, C. H., Yu, K., Lucas, J., White, E., & Abraham, R. T. (2010). Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Science Signaling, 3, 119. https://doi.org/10.1126/SCISIGNAL.2000911. ; Flamant, L., Notte, A., Ninane, N., Raes, M., & Michiels, C. (2010). Anti‐apoptotic role of HIF‐1 and AP‐1 in paclitaxel exposed breast cancer cells under hypoxia. Molecular Cancer, 9, 1–15. https://doi.org/10.1186/1476‐4598‐9‐191. ; Gao, J., Guo, Z., Cheng, J., Sun, B., Yang, J., Li, H., Wu, S., Dong, F., & Yan, X. (2020). Differential metabolic responses in breast cancer cell lines to acidosis and lactic acidosis revealed by stable isotope assisted metabolomics. Scientific Reports, 1–12, 21967. https://doi.org/10.1038/s41598‐020‐78955‐2. ; Kaltschmidt, B., Greiner, J. F. W., Kadhim, H. M., & Kaltschmidt, C. (2018). Subunit‐specific role of NF‐κB in cancer. Biomedicine, 6, 1–12. https://doi.org/10.3390/biomedicines6020044. ; Kumar, S., Ahmed, F., Sonkar, A. A., Saroj, J. K., Parihaar, A., Singhai, A., & Singh, V. K. (2016). Evaluation of serum of breast cancer patients using high resolution magic angle proton magnetic resonance spectroscopy (HR‐MAS): A search for possible biomarker? European Journal of Cancer, 12, 151–155. https://doi.org/10.7438/1584‐9341‐12‐4‐4. ; Kumar, U., Kumar, A., Singh, S., Arya, P., Singh, S. K., Chaurasia, R. N., Singh, A., & Kumar, D. (2021). An elaborative NMR based plasma metabolomics study revealed metabolic derangements in patients with mild cognitive impairment: A study on north Indian population. Metabolic Brain Disease, 36, 957–968. https://doi.org/10.1007/s11011‐021‐00700‐z. ; Kumar, U., Mehta, P., Kumar, S., Jain, A., Guleria, A., Kumar R, V., Misra, R., & Kumar, D. (2021). Circulatory histidine levels as predictive indicators of disease activity in takayasu arteritis. Analytical Science Advances, 2, 527–535. https://doi.org/10.1002/ansa.202000181. ; Kurebayashi, J., Otsuki, T., Moriya, T., & Sonoo, H. (2001). Hypoxia reduces hormone responsiveness of human breast cancer cells. Japanese Journal of Cancer Research, 92, 1093–1101. https://doi.org/10.1111/j.1349‐7006.2001.tb01064.x. ; Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. https://doi.org/10.1038/227680A0. ; Laka, K., Makgoo, L., & Mbita, Z. (2019). Survivin splice variants in arsenic trioxide (As2O3)‐induced deactivation of PI3K and MAPK cell signalling pathways in MCF‐7 cells. Genes (Basel), 10, 1–22. https://doi.org/10.3390/genes10010041. ; Li, L., Zhang, Y., Qiao, J., Yang, J. J., & Liu, Z. R. (2014). Pyruvate kinase M2 in blood circulation facilitates tumor growth by promoting. Angiogenesis, 289, 25812–25821. https://doi.org/10.1074/jbc.M114.576934. ; Liao, X. H., Lu, D. L., Wang, N., Liu, L. Y., Wang, Y., Li, Y. Q., Yan, T. B., Sun, X. G., Hu, P., & Zhang, T. C. (2014). Estrogen receptor α mediates proliferation of breast cancer MCF–7 cells via a p21/PCNA/E2F1‐dependent pathway. The FEBS Journal, 281, 927–942. https://doi.org/10.1111/FEBS.12658. ; Lugano, R., Ramachandran, M., & Dimberg, A. (2020). Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 77, 1745–1770. https://doi.org/10.1007/s00018‐019‐03351‐7. ; Masoud, G. N., & Li, W. (2015). HIF‐1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica B, 5, 378–389. https://doi.org/10.1016/j.apsb.2015.05.007. ; Masson, N., Willam, C., Maxwell, P. H., Pugh, C. W., & Ratcliffe, P. J. (2001). Independent function of two destruction domains in hypoxia‐inducible factor‐α chains activated by prolyl hydroxylation. The EMBO Journal, 20, 5197–5206. https://doi.org/10.1093/emboj/20.18.5197. ; Nepal, M., Gong, Y. D., Park, Y. R., & Soh, Y. (2011). An activator of PHD2, KRH102140, decreases angiogenesis via inhibition of HIF‐1α. Cell Biochemistry and Function, 29, 126–134. https://doi.org/10.1002/cbf.1732. ; Prasad, R., & Koch, B. (2016). In vitro anticancer activities of ethanolic extracts of dendrobium crepidatum and Dendrobium chrysanthum against T‐cell lymphoma. Journal of Cytology and Histology, 7, 1000432. https://doi.org/10.4172/2157‐7099.1000432. ; Qiu, J., Zheng, Q., & Meng, X. (2021). Hyperglycemia and chemoresistance in breast cancer: From cellular mechanisms to treatment response. Frontiers in Oncology, 11, 628359. https://doi.org/10.3389/fonc.2021.628359. ; Rani, A., Roy, S., Singh, M., Devi, U., Yadav, R. K., Gautam, S., Rawat, J. K., Ansari, M. N., Saeedan, A. S., Prakash, A., & Kaithwas, G. (2016). α‐chymotrypsin regulates free fatty acids and UCHL‐1 to ameliorate N‐methyl nitrosourea induced mammary gland carcinoma in albino wistar rats. Inflammopharmacology, 24, 277–286. https://doi.org/10.1007/S10787‐016‐0280‐5/FIGURES/3. ; Rawat, J. K., Roy, S., Singh, M., Guatam, S., Yadav, R. K., Ansari, M. N., Aldossary, S. A., Saeedan, A. S., & Kaithwas, G. (2019). Transcutaneous vagus nerve stimulation regulates the cholinergic anti‐inflammatory pathway to counteract 1, 2‐dimethylhydrazine induced colon carcinogenesis in albino wistar rats. Frontiers in Pharmacology, 10, 1–13. https://doi.org/10.3389/fphar.2019.00353. ; Roy, S., Rawat, A. K., Sammi, S. R., Devi, U., Singh, M., Gautam, S., Yadav, R. K., Rawat, J. K., Singh, L., Ansari, M. N., Saeedan, A. S., Pandey, R., Kumar, D., & Kaithwas, G. (2017). Alpha‐linolenic acid stabilizes HIF‐1α; and downregulates FASN to promote mitochondrial apoptosis for mammary gland chemoprevention. Oncotarget, 8, 70049–70071. https://doi.org/10.18632/ONCOTARGET.19551. ; Roy, S., Singh, M., Rawat, A., Devi, U., Gautam, S., Yadav, R. K., Rawat, J. K., Ansari, M. N., Saeedan, A. S., Kumar, D., & Kaithwas, G. (2018). GLA supplementation regulates PHD2 mediated hypoxia and mitochondrial apoptosis in DMBA induced mammary gland carcinoma. The International Journal of Biochemistry & Cell Biology, 96, 51–62. https://doi.org/10.1016/j.biocel.2018.01.011. ; Rundqvist, H., & Johnson, R. S. (2013). Tumour oxygenation: Implications for breast cancer prognosis. Journal of Internal Medicine, 274, 105–112. https://doi.org/10.1111/joim.12091. ; Ryan, H. E., Poloni, M., McNulty, W., Elson, D., Gassmann, M., Arbeit, J. M., & Johnson, R. S. (2000). Hypoxia‐inducible factor‐1α is a positive factor in solid tumor growth. Cancer Research, 60, 4010–4015. ; Sammi, S. R., Rawat, J. K., Raghav, N., Kumar, A., Roy, S., Singh, M., Gautam, S., Yadav, R. K., Devi, U., Pandey, R., & Kaithwas, G. (2018). Galantamine attenuates N,N‐dimethyl hydrazine induced neoplastic colon damage by inhibiting acetylcholinesterase and bimodal regulation of nicotinic cholinergic neurotransmission. European Journal of Pharmacology, 818, 174–183. https://doi.org/10.1016/J.EJPHAR.2017.10.036. ; Schofield, C. J., & Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. Nature Reviews. Molecular Cell Biology, 5, 343–354. ; Semenza, G. L. (2016). The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochimica et Biophysica Acta, Molecular Cell Research, 1863, 382–391. https://doi.org/10.1016/j.bbamcr.2015.05.036. ; Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 7–30. https://doi.org/10.3322/caac.21590. ; Singh, L., Roy, S., Kumar, A., Rastogi, S., Kumar, D., Ansari, M. N., Saeedan, A. S., Singh, M., & Kaithwas, G. (2021). Repurposing combination therapy of Voacamine with vincristine for downregulation of hypoxia‐inducible factor‐1α/fatty acid synthase co‐axis and prolyl hydroxylase‐2 activation in ER+ mammary neoplasia. Frontiers in Cell and Development Biology, 9, 736910. https://doi.org/10.3389/FCELL.2021.736910. ; Singh, M., Devi, U., Roy, S., Gupta, P. S., & Kaithwas, G. (2018). Chemical activation of prolyl hydroxylase‐2 by BBAP‐1 down regulates hypoxia inducible factor‐1α and fatty acid synthase for mammary gland chemoprevention. RSC Advances, 8, 12848–12860. https://doi.org/10.1039/c8ra01239c. ; Sivandzade, F., Bhalerao, A., & Cucullo, L. (2019). Analysis of the mitochondrial membrane potential using the cationic JC‐1 dye as a sensitive fluorescent probe. Bio‐Protocol, 9, 1–13. https://doi.org/10.21769/bioprotoc.3128. ; Stoner, M., Saville, B., Wormke, M., Dean, D., Burghardt, R., & Safe, S. (2002). Hypoxia induces proteasome‐dependent degradation of estrogen receptor α in ZR‐75 breast cancer cells. Molecular Endocrinology, 16, 2231–2242. https://doi.org/10.1210/me.2001‐0347. ; Su, Y., Loos, M., Giese, N., Metzen, E., Büchler, M. W., Friess, H., Kornberg, A., & Büchler, P. (2012). Prolyl hydroxylase‐2 (PHD2) exerts tumor‐suppressive activity in pancreatic cancer. Cancer, 118, 960–972. https://doi.org/10.1002/cncr.26344. ; Temes, E., Martín‐Puig, S., Acosta‐Iborra, B., Castellanos, M. C., Feijoo‐Cuaresma, M., Olmos, G., Aragonés, J., & Landazuri, M. O. (2005). Activation of HIF‐prolyl hydroxylases by R59949, an inhibitor of the diacylglycerol kinase. The Journal of Biological Chemistry, 280, 24238–24244. https://doi.org/10.1074/jbc.M414694200. ; Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76, 4350–4354. https://doi.org/10.1073/PNAS.76.9.4350. ; Végran, F., Boidot, R., Michiels, C., Sonveaux, P., & Feron, O. (2011). Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF‐kB/IL‐8 pathway that drives tumor angiogenesis. Cancer Research, 71, 2550–2560. https://doi.org/10.1158/0008‐5472.CAN‐10‐2828. ; Wang, L., Niu, Z., Wang, X., Li, Z., Liu, Y., Luo, F., & Yan, X. (2020). PHD2 exerts anti‐cancer and anti‐inflammatory effects in colon cancer xenografts mice via attenuating NF‐κB activity. Life Sciences, 242, 117167. https://doi.org/10.1016/j.lfs.2019.117167. ; Wang, Z., & Zhang, X. (2017). Chemopreventive activity of honokiol against 7, 12 ‐ dimethylbenz[a]anthracene‐induced mammary cancer in female Sprague Dawley rats. Frontiers in Pharmacology, 8, 1–11. https://doi.org/10.3389/fphar.2017.00320. ; Wong, R. S. Y. (2011). Apoptosis in cancer: From pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30, 87. https://doi.org/10.1186/1756‐9966‐30‐87. ; Wu, J., Huang, T., Hsieh, Y., Wang, Y. F., Yen, C. C., Lee, G. L., Yeh, C. C., Peng, Y. J., Kuo, Y. Y., Wen, H. T., Lin, H. C., Hsiao, C. W., Wu, K. K., Kung, H. J., Hsu, Y. J., & Kuo, C. C. (2020). Cancer‐derived succinate promotes macrophage polarization and cancer metastasis via succinate article cancer‐derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Molecular Cell, 77, 213–227.e5. https://doi.org/10.1016/j.molcel.2019.10.023. ; Zhang, L., & Bu, P. (2022). The two sides of creatine in cancer. Trends in Cell Biology, 32, 380–390. https://doi.org/10.1016/J.TCB.2021.11.004. ; Zhang, L., Zhu, Z., Yan, H., Wang, W., Wu, Z., Zhang, F., Zhang, Q., Shi, G., du, J., Cai, H., Zhang, X., Hsu, D., Gao, P., Piao, H. L., Chen, G., & Bu, P. (2021). Article creatine promotes cancer metastasis through creatine promotes cancer metastasis through activation of Smad2/3. Cell Metabolism, 33, 1111–1123.e4. https://doi.org/10.1016/j.cmet.2021.03.009.
  • Contributed Indexing: Keywords: DMBA; ER‐positive; PHD‐2 activator; breast cancer; hypoxia
  • Substance Nomenclature: EC 1.14.11.29 (Hypoxia-Inducible Factor-Proline Dioxygenases) ; 0 (Antineoplastic Agents) ; EC 1.14.11.2 (EGLN1 protein, human) ; 0 (NF-kappa B) ; 1UD32YR59G (Tirapazamine)
  • Entry Date(s): Date Created: 20240510 Date Completed: 20240510 Latest Revision: 20240510
  • Update Code: 20240510

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -