Zum Hauptinhalt springen

A large-scale machine learning analysis of inorganic nanoparticles in preclinical cancer research.

Mendes, BB ; Zhang, Z ; et al.
In: Nature nanotechnology, Jg. 19 (2024-06-01), Heft 6, S. 867-878
academicJournal

Titel:
A large-scale machine learning analysis of inorganic nanoparticles in preclinical cancer research.
Autor/in / Beteiligte Person: Mendes, BB ; Zhang, Z ; Conniot, J ; Sousa, DP ; Ravasco, JMJM ; Onweller, LA ; Lorenc, A ; Rodrigues, T ; Reker, D ; Conde, J
Zeitschrift: Nature nanotechnology, Jg. 19 (2024-06-01), Heft 6, S. 867-878
Veröffentlichung: London : Nature Pub. Group, 2006-, 2024
Medientyp: academicJournal
ISSN: 1748-3395 (electronic)
DOI: 10.1038/s41565-024-01673-7
Schlagwort:
  • Humans
  • Animals
  • Mice
  • Databases, Factual
  • Antineoplastic Agents chemistry
  • Antineoplastic Agents therapeutic use
  • Antineoplastic Agents administration & dosage
  • Machine Learning
  • Nanoparticles chemistry
  • Neoplasms drug therapy
  • Nanomedicine methods
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nat Nanotechnol] 2024 Jun; Vol. 19 (6), pp. 867-878. <i>Date of Electronic Publication: </i>2024 May 15.
  • MeSH Terms: Machine Learning* ; Nanoparticles* / chemistry ; Neoplasms* / drug therapy ; Nanomedicine* / methods ; Humans ; Animals ; Mice ; Databases, Factual ; Antineoplastic Agents / chemistry ; Antineoplastic Agents / therapeutic use ; Antineoplastic Agents / administration & dosage
  • References: Mendes, B. B., Sousa, D. P., Conniot, J. & Conde, J. Nanomedicine-based strategies to target and modulate the tumor microenvironment. Trends Cancer 7, 847–862 (2021). (PMID: 10.1016/j.trecan.2021.05.00134090865) ; Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J. & Corrie, S. R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016). (PMID: 10.1007/s11095-016-1958-527299311) ; Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019). (PMID: 10.1002/btm2.10143315727996764803) ; Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update post COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021). (PMID: 10.1002/btm2.10246345141598420572) ; Mendes, B. B. et al. Nanodelivery of nucleic acids. Nat. Rev. Methods Primers 2, 24 (2022). (PMID: 10.1038/s43586-022-00104-y354809879038125) ; van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019). (PMID: 10.1038/s41565-019-0567-y316951507227032) ; Janjua, T. I., Cao, Y., Yu, C. & Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 6, 1072–1074 (2021). (PMID: 10.1038/s41578-021-00385-x346426078496429) ; Das, C. G. A., Kumar, V. G., Dhas, T. S., Karthick, V. & Kumar, C. M. V. Nanomaterials in anticancer applications and their mechanism of action - a review. Nanomedicine 47, 102613 (2023). (PMID: 10.1016/j.nano.2022.10261336252911) ; Gavas, S., Quazi, S. & Karpiński, T. M. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res. Lett. 16, 173 (2021). (PMID: 10.1186/s11671-021-03628-6348661668645667) ; Faria, M., Björnmalm, M., Crampin, E. J. & Caruso, F. A few clarifications on MIRIBEL. Nat. Nanotechnol. 15, 2–3 (2020). (PMID: 10.1038/s41565-019-0612-x31925392) ; Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018). (PMID: 10.1038/s41565-018-0246-4301906206150419) ; Lorenc, A. et al. Machine learning for next-generation nanotechnology in healthcare. Matter 4, 3078–3080 (2021). (PMID: 10.1016/j.matt.2021.09.014) ; Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021). (PMID: 10.1038/s41573-020-0090-833277608) ; Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2023). (PMID: 10.1126/science.abm5551) ; Brockow, K. et al. Experience with polyethylene glycol allergy-guided risk management for COVID-19 vaccine anaphylaxis. Allergy 77, 2200–2210 (2022). (PMID: 10.1111/all.1518334806775) ; Sellaturay, P., Nasser, S., Islam, S., Gurugama, P. & Ewan, P. W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy 51, 861–863 (2021). (PMID: 10.1111/cea.13874338252398251011) ; Stone, C. A. Jr. et al. Immediate hypersensitivity to polyethylene glycols and polysorbates: more common than we have recognized. J. Allergy Clin. Immunol. Pract. 7, 1533–1540.e8 (2019). (PMID: 10.1016/j.jaip.2018.12.00330557713) ; Chenthamara, D. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 20 (2019). (PMID: 10.1186/s40824-019-0166-x318322326869321) ; Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). (PMID: 10.3322/caac.2166033538338) ; Global Burden of Disease 2019 Cancer Collaboration. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 8, 420–444 (2022). ; Alvarez, E. M. et al. The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Oncol. 23, 27–52 (2022). (PMID: 10.1016/S1470-2045(21)00581-7) ; Chen, Y., Chen, H. & Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 25, 3144–3176 (2013). (PMID: 10.1002/adma.20120529223681931) ; Iscaro, A., Howard, F. N. & Muthana, M. Nanoparticles: properties and applications in cancer immunotherapy. Curr. Pharm. Des. 25, 1962–1979 (2019). (PMID: 10.2174/138161282566619070821424031566122) ; Zhou, H. et al. Biodegradable inorganic nanoparticles for cancer theranostics: insights into the degradation behavior. Bioconjug. Chem. 31, 315–331 (2020). (PMID: 10.1021/acs.bioconjchem.9b0069931765561) ; Zhang, Y. et al. Prolonged local in vivo delivery of stimuli-responsive nanogels that rapidly release doxorubicin in triple-negative breast cancer cells. Adv. Healthc. Mater. 9, 1901101 (2020). (PMID: 10.1002/adhm.201901101) ; Conde, J., Oliva, N., Zhang, Y. & Artzi, N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat. Mater. 15, 1128–1138 (2016). (PMID: 10.1038/nmat4707274540436594055) ; Kwong, B., Gai, S. A., Elkhader, J., Wittrup, K. D. & Irvine, D. J. Localized immunotherapy via liposome-anchored anti-CD137 + IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res. 73, 1547–1558 (2013). (PMID: 10.1158/0008-5472.CAN-12-3343234367943594475) ; Li, W. et al. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy. J. Control. Release 225, 170–182 (2016). (PMID: 10.1016/j.jconrel.2016.01.04926826304) ; Lei, C. et al. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J. Am. Chem. Soc. 132, 6906–6907 (2010). (PMID: 10.1021/ja102414t204332062874126) ; Fransen, M. F., van der Sluis, T. C., Ossendorp, F., Arens, R. & Melief, C. J. M. Controlled local delivery of CTLA-4 blocking antibody induces CD8 + T-cell-dependent tumor eradication and decreases risk of toxic side effects. Clin. Cancer Res. 19, 5381–5389 (2013). (PMID: 10.1158/1078-0432.CCR-12-078123788581) ; Ishihara, J. et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci. Transl. Med. 9, eaan0401 (2017). (PMID: 10.1126/scitranslmed.aan040129118259) ; Errington, T. M., Denis, A., Perfito, N., Iorns, E. & Nosek, B. A. Challenges for assessing replicability in preclinical cancer biology. eLife 10, e67995 (2021). (PMID: 10.7554/eLife.67995348740088651289) ; Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). (PMID: 10.1038/natrevmats.2016.14) ; Cheng, Y.-H., He, C., Riviere, J. E., Monteiro-Riviere, N. A. & Lin, Z. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano 14, 3075–3095 (2020). (PMID: 10.1021/acsnano.9b08142320783037098057) ; Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. https://doi.org/10.1038/s41563-023-01472-w (2023). ; Lasagna-Reeves, C. et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun. 393, 649–655 (2010). (PMID: 10.1016/j.bbrc.2010.02.04620153731) ; Hatakeyama, H., Akita, H. & Harashima, H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv. Drug Deliv. Rev. 63, 152–160 (2011). (PMID: 10.1016/j.addr.2010.09.00120840859) ; Harris, J. M., Martin, N. E. & Modi, M. Pegylation. Clin. Pharmacokinet. 40, 539–551 (2001). (PMID: 10.2165/00003088-200140070-0000511510630) ; Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016). (PMID: 10.1016/j.addr.2015.09.01226456916) ; Zhang, M. et al. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B 11, 2265–2285 (2021). (PMID: 10.1016/j.apsb.2021.03.033345225878424218) ; Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023). (PMID: 10.1038/s41563-023-01630-037592029) ; Setyawati, M. I. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin. Nat. Commun. 4, 1673 (2013). (PMID: 10.1038/ncomms265523575677) ; Shamay, Y. et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361–368 (2018). (PMID: 10.1038/s41563-017-0007-z294030545930166) ; Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021). (PMID: 10.1038/s41565-021-00870-y337673828197729) ; Bannigan, P. et al. Machine learning models to accelerate the design of polymeric long-acting injectables. Nat. Commun. 14, 35 (2023). (PMID: 10.1038/s41467-022-35343-w366272809832011) ; Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020). (PMID: 10.1038/s42256-019-0138-9326074727326367) ; Caballero, D. et al. Precision biomaterials in cancer theranostics and modelling. Biomaterials 280, 121299 (2022). (PMID: 10.1016/j.biomaterials.2021.12129934871880) ; Zhao, Y. et al. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci. Rep. 7, 4131 (2017). (PMID: 10.1038/s41598-017-03834-2286461435482848) ; Kolhar, P. et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl Acad. Sci. USA 110, 10753–10758 (2013). (PMID: 10.1073/pnas.1308345110237544113696781) ; Zhang, M., Kim, H. S., Jin, T. & Moon, W. K. Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer. J. Photochem. Photobiol. B 170, 58–64 (2017). (PMID: 10.1016/j.jphotobiol.2017.03.02528390259) ; Jo, Y. et al. Chemoresistance of cancer cells: requirements of tumor microenvironment-mimicking in vitro models in anti-cancer drug development. Theranostics 8, 5259–5275 (2018). (PMID: 10.7150/thno.29098305555456276092) ; Guo, B. et al. Molecular engineering of conjugated polymers for biocompatible organic nanoparticles with highly efficient photoacoustic and photothermal performance in cancer theranostics. ACS Nano 11, 10124–10134 (2017). (PMID: 10.1021/acsnano.7b0468528892609) ; Li, Z. et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74, 144–154 (2016). (PMID: 10.1016/j.biomaterials.2015.09.03826454052) ; Das, P., Delost, M. D., Qureshi, M. H., Smith, D. T. & Njardarson, J. T. A survey of the structures of US FDA approved combination drugs. J. Med. Chem. 62, 4265–4311 (2019). (PMID: 10.1021/acs.jmedchem.8b0161030444362) ; Fernandes Neto, J. M. et al. Multiple low dose therapy as an effective strategy to treat EGFR inhibitor-resistant NSCLC tumours. Nat. Commun. 11, 3157 (2020). (PMID: 10.1038/s41467-020-16952-9325720297308397) ; Kim, M. H. et al. The effect of VEGF on the myogenic differentiation of adipose tissue derived stem cells within thermosensitive hydrogel matrices. Biomaterials 31, 1213–1218 (2010). (PMID: 10.1016/j.biomaterials.2009.10.05719914711) ; Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). ; Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. in Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016). ; Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. in Advances in Neural Information Processing Systems (eds Guyon, I. et al.) Vol. 30 (Curran Associates, Inc., 2017).
  • Grant Information: ERC-StG-2019-848325 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council); R21EB034443 U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  • Substance Nomenclature: 0 (Antineoplastic Agents)
  • Entry Date(s): Date Created: 20240515 Date Completed: 20240619 Latest Revision: 20240619
  • Update Code: 20240620

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -