Zum Hauptinhalt springen

Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids.

Vloemans, D ; Van Hileghem, L ; et al.
In: Methods in molecular biology (Clifton, N.J.), Jg. 2804 (2024), S. 3-50
academicJournal

Titel:
Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids.
Autor/in / Beteiligte Person: Vloemans, D ; Van Hileghem, L ; Ordutowski, H ; Dal Dosso, F ; Spasic, D ; Lammertyn, J
Zeitschrift: Methods in molecular biology (Clifton, N.J.), Jg. 2804 (2024), S. 3-50
Veröffentlichung: Totowa, NJ : Humana Press ; <i>Original Publication</i>: Clifton, N.J. : Humana Press,, 2024
Medientyp: academicJournal
ISSN: 1940-6029 (electronic)
DOI: 10.1007/978-1-0716-3850-7_1
Schlagwort:
  • Humans
  • Lab-On-A-Chip Devices
  • Microfluidics methods
  • Microfluidics instrumentation
  • Point-of-Care Testing
  • Microfluidic Analytical Techniques instrumentation
  • Microfluidic Analytical Techniques methods
  • Nucleic Acids analysis
  • Point-of-Care Systems
  • Proteins analysis
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Methods Mol Biol] 2024; Vol. 2804, pp. 3-50.
  • MeSH Terms: Microfluidic Analytical Techniques* / instrumentation ; Microfluidic Analytical Techniques* / methods ; Nucleic Acids* / analysis ; Point-of-Care Systems* ; Proteins* / analysis ; Humans ; Lab-On-A-Chip Devices ; Microfluidics / methods ; Microfluidics / instrumentation ; Point-of-Care Testing
  • References: Atella V et al (2019) Trends in age-related disease burden and healthcare utilization. Aging Cell 18:1–8. (PMID: 10.1111/acel.12861) ; Baker RE et al (2021) Infectious disease in an era of global change. Nat Rev Microbiol. https://doi.org/10.1038/s41579-021-00639-z. ; Billings PR (2006) Three barriers to innovative diagnostics. Nat Biotechnol 24:917–918. (PMID: 1690012910.1038/nbt0806-917) ; Rohr UP et al (2016) The value of in vitro diagnostic testing in medical practice: a status report. PLoS One 11:1–16. (PMID: 10.1371/journal.pone.0149856) ; Kumar S et al (2021) Aspects of point-of-care diagnostics for personalized health wellness. Int J Nanomedicine 16:383–402. (PMID: 33488077781466110.2147/IJN.S267212) ; Peeling RW, Mabey D (2010) Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect 16:1062–1069. (PMID: 2067028810.1111/j.1469-0691.2010.03279.x) ; Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144. (PMID: 1835807510.1146/annurev.bioeng.10.061807.160524) ; Mabey D, Peeling RW, Ustianowski A, Perkins MD (2004) Diagnostics for the developing world. Nat Rev Microbiol 2:231–240. (PMID: 1508315810.1038/nrmicro841) ; Bottero J et al (2017) Simultaneous human immunodeficiency virus- hepatitis B-hepatitis C point-of-care tests improve outcomes in linkage-to-care: results of a randomized control trial in persons without healthcare coverage. Open Forum Infect Dis 2:2633851. ; Govender K, Parboosing R, Siyaca N, Moodley P (2016) Dried blood spot specimen quality and validation of a new pre-analytical processing method for qualitative HIV-1 PCR, KwaZulu-Natal, South Africa. Afr J Lab Med 5:1–7. (PMID: 10.4102/ajlm.v5i1.349) ; Ayukekbong JA, Ntemgwa M, Atabe AN (2017) The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 6:1–8. (PMID: 10.1186/s13756-017-0208-x) ; Byarugaba DK (2004) Antimicrobial resistance in developing countries and responsible risk factors. Int J Antimicrob Agents 24:105–110. (PMID: 1528830710.1016/j.ijantimicag.2004.02.015) ; Udugama B et al (2020) Diagnosing COVID-19: the disease and tools for detection. ACS Nano 14:3822–3835. (PMID: 3222317910.1021/acsnano.0c02624) ; Desai AN et al (2019) Real-time epidemic forecasting: challenges and opportunities. Health Secur 17:268–275. (PMID: 31433279670825910.1089/hs.2019.0022) ; Hansen GT (2020) Point-of-care testing in microbiology: a mechanism for improving patient outcomes. Clin Chem 66:124–137. (PMID: 3181100210.1373/clinchem.2019.304782) ; Kelly-Cirino CD et al (2019) Importance of diagnostics in epidemic and pandemic preparedness. BMJ Glob Health 4:1–8. (PMID: 10.1136/bmjgh-2018-001179) ; St John A, Price CP (2014) Existing and emerging Technologies for Point-of-Care Testing. Clin Biochem Rev 35:155–167. (PMID: 253367614204237) ; Larsson A, Greig-Pylypczuk R, Huisman A (2015) The state of point-of-care testing: a european perspective. Ups J Med Sci 120:1–10. (PMID: 25622619438900210.3109/03009734.2015.1006347) ; Lei BUW, Prow TW (2019) A review of microsampling techniques and their social impact. Biomed Microdevices 21:1–30. (PMID: 10.1007/s10544-019-0412-y) ; Lim MD (2018) Review article: dried blood spots for global health diagnostics and surveillance: opportunities and challenges. Am J Trop Med Hyg 99:256–265. (PMID: 29968557609034410.4269/ajtmh.17-0889) ; Zakaria R, Allen KJ, Koplin JJ, Roche P, Greaves RF (2016) Advantages and challenges of dried blood spot analysis by mass spectrometry across the total testing process. Ejifcc 27:288–317. (PMID: 281492635282914) ; Tanna S, Lawson G (2015) Self-sampling and quantitative analysis of DBS: can it shift the balance in over-burdened healthcare systems? Bioanalysis 7:1963–1966. (PMID: 2632717610.4155/bio.15.110) ; Sikombe Id Ket al (2019) Accurate dried blood spots collection in the community using non-medically trained personnel could support scaling up routine viral load testing in resource limited settings. https://doi.org/10.1371/journal.pone.0223573. ; Doornekamp L et al (2020) Dried blood spot cards: a reliable sampling method to detect human antibodies against rabies virus. PLoS Negl Trop Dis 14:1–10. (PMID: 10.1371/journal.pntd.0008784) ; Toh ZQ et al (2021) The use of dried blood spots for the serological evaluation of SARS-CoV-2 antibodies. J Public Health (Oxf):1–4. https://doi.org/10.1093/pubmed/fdab011. ; Wu G, Zaman MH (2012) Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull World Health Organ 90:914–920. (PMID: 23284197352495710.2471/BLT.12.102780) ; Xing J, Loureiro J, Patel MT, Mikhailov D, Gusev AI (2020) Evaluation of a novel blood microsampling device for clinical trial sample collection and protein biomarker analysis. Bioanalysis 12:919–935. (PMID: 3268695510.4155/bio-2020-0063) ; Törnqvist E et al (2014) Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS One 9:1–11. (PMID: 10.1371/journal.pone.0101638) ; Urdea AM et al (2006) Requirements for high impact diagnostics. Nature 444:73–79. (PMID: 1715989610.1038/nature05448) ; Hay Burgess DC, Wasserman J, Dahl CA (2006) Global health diagnostics. Nature 444(Suppl):1–2. (PMID: 1715988810.1038/nature05440) ; Schito M et al (2012) Opportunities and challenges for cost-efficient implementation of new point-of-care diagnostics for HIV and tuberculosis. J Infect Dis 205:169–180. (PMID: 10.1093/infdis/jis044) ; Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. (PMID: 1402152910.1111/j.1749-6632.1962.tb13623.x) ; Ehrenkranz JRL (2002) Home and point-of-care pregnancy tests: a review of the technology. Epidemiology 13:15–18. (PMID: 10.1097/00001648-200205001-00003) ; Peeling RW, Holmes KK, Mabey D, Ronald A (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 82:1–6. (PMID: 10.1136/sti.2006.024265) ; Land KJ, Boeras DI, Chen XS, Ramsay AR, Peeling RW (2019) REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat Microbiol 4:46–54. (PMID: 3054609310.1038/s41564-018-0295-3) ; Chen XS (2013) Rapid diagnostic tests for neurosyphilis. Lancet Infect Dis 13:918–919. (PMID: 2415689610.1016/S1473-3099(13)70293-7) ; Jain S et al (2021) Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron 179:113074. (PMID: 33596516786689510.1016/j.bios.2021.113074) ; Paul S et al (2021) Industry 4.0 applications for medical/healthcare services, pp 1–32. ; Smith S, Korvink JG, Mager D, Land K (2018) The potential of paper-based diagnostics to meet the ASSURED criteria. RSC Adv 8:34012–34034. (PMID: 35548839908690910.1039/C8RA06132G) ; Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators 1:244–248. (PMID: 10.1016/0925-4005(90)80209-I) ; Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153. (PMID: 2017983010.1039/b820557b) ; Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286. (PMID: 1211775910.1146/annurev.bioeng.4.112601.125916) ; van Lintel HTG, van De Pol FCM, Bouwstra S (1988) A piezoelectric micropump based on micromachining of silicon. Sensors Actuators 15:153–167. (PMID: 10.1016/0250-6874(88)87005-7) ; Verpoorte EMJ et al (1994) Three-dimensional micro flow manifolds for miniaturized chemical analysis systems. J Micromech Microeng 4:246–256. (PMID: 10.1088/0960-1317/4/4/009) ; Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. (PMID: 2164467910.1021/ac980656z) ; Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184. (PMID: 10.1146/annurev.matsci.28.1.153) ; Temiz Y, Lovchik RD, Kaigala GV, Delamarche E (2015) Lab-on-a-chip devices: how to close and plug the lab? Microelectron Eng 132:156–175. (PMID: 10.1016/j.mee.2014.10.013) ; Volpatti LR, Yetisen AK (2012) Commercialization of point-of -care diagnostic microfluidic devices. Lab Chip 12:2118–2134. (PMID: 10.1039/c2lc21204h) ; Mohammed MI, Haswell S, Gibson I (2015) Lab-on-a-chip or chip-in-a-lab: challenges of commercialization lost in translation. Procedia Technol 20:54–59. (PMID: 10.1016/j.protcy.2015.07.010) ; Xu L, Wang A, Li X, Oh KW (2020) Passive micropumping in microfluidics for point-of-care testing. Biomicrofluidics 14:031503. (PMID: 32509049726348310.1063/5.0002169) ; Narayanamurthy V et al (2020) Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis. RSC Adv 10:11652–11680. (PMID: 35496619905078710.1039/D0RA00263A) ; Young T (1805) An essay on the cohesion of fluids. Philos Trans 95:65–87. (PMID: 10.1098/rstl.1805.0005) ; Laplace P-S (1805) Traité de Mécanique Céleste. Supplements au Livre X. ; Chen T, Chiu MS, Weng CN (2006) Derivation of the generalized young-laplace equation of curved interfaces in nanoscaled solids. J Appl Phys 100:1–5. (PMID: 10.1063/1.2356094) ; Olanrewaju A, Beaugrand M, Yafia M, Juncker D (2018) Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18:2323–2347. (PMID: 3001016810.1039/C8LC00458G) ; Bruus H (2006) Lecture notes theoretical microfluidics. Physics. ; Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 80: 276, 779–781. ; Safavieh R, Juncker D (2013) Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements. Lab a chip – miniaturisation. Chem Biol 13:4180–4189. ; Park J, Han DH, Park JK (2020) Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab Chip 20:1191–1203. (PMID: 3211902410.1039/D0LC00047G) ; Safavieh R, Tamayol A, Juncker D (2015) Serpentine and leading-edge capillary pumps for microfluidic capillary systems. Microfluid Nanofluidics 18:357–366. (PMID: 10.1007/s10404-014-1454-3) ; Temiz Y, Delamarche E (2018) Sub-nanoliter, real-time flow monitoring in microfluidic chips using a portable device and smartphone. Sci Rep 8:1–12. (PMID: 10.1038/s41598-018-28983-w) ; Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9:3330–3337. (PMID: 1990439710.1039/b906523g) ; Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125. (PMID: 1718021410.1039/B609813D) ; Olanrewaju AO, Robillard A, Dagher M, Juncker D (2016) Autonomous microfluidic capillaric circuits replicated from 3D-printed molds. Lab Chip 16:3804–3814. (PMID: 27722504531468810.1039/C6LC00764C) ; Zimmermann M, Hunziker P, Delamarche E (2008) Valves for autonomous capillary systems. Microfluid Nanofluidics 5:395–402. (PMID: 10.1007/s10404-007-0256-2) ; Andersson H, Van Wijngaart W, Der G, P. & Niklaus, F. (2001) Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels. Sensors Actuators B Chem 75:136–141. (PMID: 10.1016/S0925-4005(00)00675-4) ; Kazemzadeh A, Ganesan P, Ibrahim F, He S, Madou MJ (2013) The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study. PLoS One 8:1–12. (PMID: 10.1371/journal.pone.0073002) ; Convery N, Gadegaard N (2019) 30 years of microfluidics. Micro Nano Eng 2:76–91. (PMID: 10.1016/j.mne.2019.01.003) ; Martinez AW et al (2010) Programmable diagnostic devices made from paper and tape. Lab Chip 10:2499–2504. (PMID: 2067217910.1039/c0lc00021c) ; Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105:19606–19611. (PMID: 19064929260494110.1073/pnas.0810903105) ; Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320. (PMID: 10.1002/anie.200603817) ; Nilghaz A, Ballerini DR, Shen W (2013) Exploration of microfluidic devices based on multi-filament threads and textiles: a review. Biomicrofluidics 7:1–16. (PMID: 10.1063/1.4820413) ; Xing S, Jiang J, Pan T (2013) Interfacial microfluidic transport on micropatterned superhydrophobic textile. Lab Chip 13:1937–1947. (PMID: 2353618910.1039/c3lc41255e) ; Safavieh R, Zhou GZ, Juncker D (2011) Microfluidics made of yarns and knots: from fundamental properties to simple networks and operations. Lab Chip 11:2618–2624. (PMID: 2167794510.1039/c1lc20336c) ; Gong MM, Sinton D (2017) Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev 117:8447–8480. (PMID: 2862717810.1021/acs.chemrev.7b00024) ; Washburn EW (1921) The dynamics of capillary flow. Phys Rev 18:206–209. (PMID: 10.1103/PhysRev.18.206) ; Lucas R (1918) Rate of capillary Ascension of liquids. Kolloid 23. ; Darcy (1856) Les Fontaines Publiques de La Ville de Dijon: Exposition et Application des Principes a Suivre et des Formulesa Employer dans les Questions de Distribution d’Eau. ; Datta AK (2002) Chapter 6: convection heat transfer. In: Biological and bioenvironmental heat and mass transfer. CRC Press, Boca Raton, pp 95–121. (PMID: 10.1201/9780203910184) ; Camplisson CK, Schilling KM, Pedrotti WL, Stone HA, Martinez AW (2015) Two-ply channels for faster wicking in paper-based microfluidic devices. Lab Chip 15:4461–4466. (PMID: 2647767610.1039/C5LC01115A) ; Hong S, Kim W (2015) Dynamics of water imbibition through paper channels with wax boundaries. Microfluid Nanofluidics 19:845–853. (PMID: 10.1007/s10404-015-1611-3) ; Masoodi R, Pillai KM (2012) Darcy’s law-based model for wicking in paper-like swelling porous media. AICHE J 59:215–228. ; Perez-Cruz A, Stiharu I, Dominguez-Gonzalez A (2017) Two-dimensional model of imbibition into paper-based networks using Richards’ equation. Microfluid Nanofluidics 21:1–12. (PMID: 10.1007/s10404-017-1937-0) ; Rolland JP, Mourey DA (2013) Paper as a novel material platform for devices. MRS Bull 38:299–305. (PMID: 10.1557/mrs.2013.58) ; Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095. (PMID: 2033738810.1021/ac901071p) ; Zhang H, Smith E, Zhang W, Zhou A (2019) A. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine. Biomed Microdevices 21:48. (PMID: 3118356510.1007/s10544-019-0388-7) ; Kao PK, Hsu CC (2014) One-step rapid fabrication of paper-based microfluidic devices using fluorocarbon plasma polymerization. Microfluid Nanofluidics 16:811–818. (PMID: 10.1007/s10404-014-1347-5) ; Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80:3387–3392. (PMID: 18333627373310810.1021/ac702605a) ; Osborn JL et al (2010) Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10:2659–2665. (PMID: 20680208489212210.1039/c004821f) ; Fu E, Ramsey SA, Kauffman P, Lutz B, Yager P (2011) Transport in two-dimensional paper networks. Microfluid Nanofluidics 10:29–35. (PMID: 22140373322884110.1007/s10404-010-0643-y) ; Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133:17564–17566. (PMID: 2200432910.1021/ja2071779) ; Xu G et al (2016) Paper-Origami-based multiplexed malaria diagnostics from whole blood. Angew Chem Int Ed 55:15250–15253. (PMID: 10.1002/anie.201606060) ; Toley BJ et al (2013) Tunable-delay shunts for paper microfluidic devices. Anal Chem 85:11545–11552. (PMID: 24245747395020710.1021/ac4030939) ; Lutz B et al (2013) Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13:2840–2847. (PMID: 23685876371070310.1039/c3lc50178g) ; Chen H, Cogswell J, Anagnostopoulos C, Faghri M (2012) A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip 12:2909–2913. (PMID: 2269922810.1039/c2lc20970e) ; Yang X, Forouzan O, Brown TP, Shevkoplyas SS (2011) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12:274–280. (PMID: 2209460910.1039/C1LC20803A) ; Vella SJ et al (2012) Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem 84:2883–2891. (PMID: 22390675332010810.1021/ac203434x) ; Lutz B et al (2013) Dissolvable fluidic time delays for programming multi- step assays in instrument-free paper diagnostics. Lab Chip 13:2840–2847. (PMID: 23685876371070310.1039/c3lc50178g) ; Fu E et al (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579. (PMID: 22537313336619410.1021/ac300689s) ; Fridley GE, Le H, Yager P (2014) Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal Chem 86:6447–6453. (PMID: 24882058408238510.1021/ac500872j) ; Achille C et al (2021) 3D printing of monolithic capillarity-driven microfluidic devices for diagnostics. Adv Mater 33:1–7. ; Hansson J, Yasuga H, Haraldsson T, Van Der Wijngaart W (2016) Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays. Lab Chip 16:298–304. (PMID: 2664605710.1039/C5LC01318F) ; de Puig H, Bosch I, Gehrke L, Hamad-Schifferli K (2017) Challenges of the nano–bio Interface in lateral flow and dipstick immunoassays. Trends Biotechnol 35:1169–1180. (PMID: 28965747569601310.1016/j.tibtech.2017.09.001) ; Lim H, Jafry AT, Lee J (2019) Fabrication, flow control, and applications of microfluidic paper-based analytical devices. Molecules 24:1–32. (PMID: 10.3390/molecules24162869) ; Yamada K, Shibata H, Suzuki K, Citterio D (2017) Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17:1206–1249. (PMID: 2825120010.1039/C6LC01577H) ; Wang X, Hagen JA, Papautsky I (2013) Paper pump for passive and programmable transport. Biomicrofluidics 7:1–11. (PMID: 10.1063/1.4790819) ; Xu ZR et al (2008) A microfluidic flow injection system for DNA assay with fluids driven by an on-chip integrated pump based on capillary and evaporation effects. Lab Chip 8:1658–1663. (PMID: 1881338710.1039/b805774e) ; Wang J et al (2010) A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. Lab Chip 10:3157–3162. (PMID: 20924527365185610.1039/c0lc00132e) ; Cummins BM, Chinthapatla R, Lenin B, Ligler FS, Walker GM (2017) Modular pumps as programmable hydraulic batteries for microfluidic devices. Technology 05:21–30. (PMID: 10.1142/S2339547817200011) ; Kokalj T, Park Y, Vencelj M, Jenko M, Lee LP (2014) Self-powered imbibing microfluidic pump by liquid encapsulation: SIMPLE. Lab Chip 14:4329–4333. (PMID: 2523183110.1039/C4LC00920G) ; Dal Dosso F, Kokalj T, Belotserkovsky J, Spasic D, Lammertyn J (2018) Self-powered infusion microfluidic pump for ex vivo drug delivery. Biomed Microdevices 20:44. (PMID: 2985095110.1007/s10544-018-0289-1) ; Vloemans D et al (2021) Precise sample metering method by coordinated burst action of hydrophobic burst valves applied to dried blood spot collection. Lab Chip 21:4445–4454. (PMID: 3465115810.1039/D1LC00422K) ; Dal Dosso F, Tripodi L, Spasic D, Kokalj T, Lammertyn J (2019) Innovative hydrophobic valve allows complex liquid manipulations in a self-powered channel-based microfluidic device. ACS Sensors 4:694–703. (PMID: 3080710610.1021/acssensors.8b01555) ; Dal Dosso F et al (2018) Creasensor: SIMPLE technology for creatinine detection in plasma. Anal Chim Acta 1000:191–198. (PMID: 2928930810.1016/j.aca.2017.11.026) ; McNeely MR, Sputea MK, Tusneem NA, Oliphant AR (1999) Sample processing with hydrophobic microfluidics. JALA J Assoc Lab Autom 4:30–33. (PMID: 10.1016/S1535-5535-04-00016-4) ; Lim H et al (2022) Biosensors and bioelectronics smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosens Bioelectron 210:114329. (PMID: 3550809310.1016/j.bios.2022.114329) ; Koh A et al (2016) A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med 8:1–14. (PMID: 10.1126/scitranslmed.aaf2593) ; Park SM et al (2020) A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat Biomed Eng 4:624–635. (PMID: 32251391737721310.1038/s41551-020-0534-9) ; Guthrie R, Susi A (1963) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32:338–343. (PMID: 1406351110.1542/peds.32.3.338) ; Humbert P et al (2016) Skin capillaroscopy. In: Measuring the skin. https://doi.org/10.1007/978-3-319-26594-0. (PMID: 10.1007/978-3-319-26594-0) ; Bian S et al (2020) Evaluating an easy sampling method using dried blood spots to determine vedolizumab concentrations. J Pharm Biomed Anal 185:113224. (PMID: 3215192910.1016/j.jpba.2020.113224) ; Sciberras D et al (2019) A pharmacokinetic study of radiprodil oral suspension in healthy adults comparing conventional venous blood sampling with two microsampling techniques. Pharmacol Res Perspect 7:1–8. (PMID: 10.1002/prp2.459) ; Karp DG et al (2020) A serological assay to detect SARS-CoV-2 antibodies in at-home collected finger-prick dried blood spots. Sci Rep 10:1–7. (PMID: 10.1038/s41598-020-76913-6) ; Popp W et al (2010) What is the use? An international look at reuse of single-use medical devices. Int J Hyg Environ Health 213:302–307. (PMID: 2047131610.1016/j.ijheh.2010.04.003) ; Smit PW et al (2014) Systematic review of the use of dried blood spots for monitoring HIV viral load and for early infant diagnosis. https://doi.org/10.1371/journal.pone.0086461. ; Serafin A, Malinowski M, Prażmowska-Wilanowska A (2020) Blood volume and pain perception during finger prick capillary blood sampling: are all safety lancets equal? Postgrad Med 132:288–295. (PMID: 3202720510.1080/00325481.2020.1717160) ; Morgan PE (2021) Microsampling devices for routine therapeutic drug monitoring-are we there yet? Ther Drug Monit 43:322–334. (PMID: 3367530110.1097/FTD.0000000000000884) ; Chan PCR, Rozmanc M, Seiden-Long I, Kwan J (2009) Evaluation of a point-of-care glucose meter for general use in complex tertiary care facilities. Clin Biochem 42:1104–1112. (PMID: 1934568210.1016/j.clinbiochem.2009.03.023) ; Lenicek Krleza J, Dorotic A, Grzunov A, Maradin M (2015) Capillary blood sampling: national recommendations on behalf of the Croatian society of medical biochemistry and laboratory medicine. Biochem Med 25:335–358. (PMID: 10.11613/BM.2015.034) ; Dungan K, Chapman J, Braithwaite SS, Buse J (2007) Glucose measurement: confounding issues in setting targets for inpatient management. Diabetes Care 30:403–409. (PMID: 1725952010.2337/dc06-1679) ; Erbach M et al (2016) Interferences and limitations in blood glucose self-testing: an overview of the current knowledge. J Diabetes Sci Technol 10:1161–1168. (PMID: 27044519503295110.1177/1932296816641433) ; Martial LC et al (2016) Cost evaluation of dried blood spot home sampling as compared to conventional sampling for therapeutic drug monitoring in children. PLoS One 11:e0167433. (PMID: 27941974515281310.1371/journal.pone.0167433) ; Denniff P, Spooner N (2010) The effect of hematocrit on assay bias when using DBS samples for the quantitative bioanalysis of drugs. Bioanalysis 2:1385–1395. (PMID: 2108333910.4155/bio.10.103) ; Jones C, Dunseath GJ, Lemon J, Luzio SD (2018) Microsampling collection methods for measurement of C-peptide in whole blood. J Diabetes Sci Technol 12:1024–1028. (PMID: 29521111613461610.1177/1932296818763464) ; Bloem K et al (2018) Capillary blood microsampling to determine serum biopharmaceutical concentration: mitra® microsampler vs dried blood spot. Bioanalysis 10:815–823. (PMID: 2986341210.4155/bio-2018-0010) ; Veenhof H et al (2020) Volumetric absorptive microsampling and dried blood spot microsampling vs. conventional venous sampling for tacrolimus trough concentration monitoring. Clin Chem Lab Med 58:1687–1695. (PMID: 3241243710.1515/cclm-2019-1260) ; Leuthold LA et al (2015) New microfluidic-based sampling procedure for overcoming the hematocrit problem associated with dried blood spot analysis. Anal Chem 87:2068–2071. (PMID: 2560753810.1021/ac503931g) ; Lenk G et al (2015) A disposable sampling device to collect volume-measured DBS directly from a fingerprick onto DBS paper. Bioanalysis 7:2085–2094. (PMID: 2632718710.4155/bio.15.134) ; Neto R, Gooley A, Breadmore MC, Hilder EF, Lapierre F (2018) Precise, accurate and user-independent blood collection system for dried blood spot sample preparation. Anal Bioanal Chem 410:3315–3323. (PMID: 2962338410.1007/s00216-018-0993-y) ; Kim J-H, Woenker T, Adamec J, Regnier FE (2013) Simple, miniaturized blood plasma extraction method. https://doi.org/10.1021/ac402735y. ; Hauser A et al (2019) Evaluation of a BioRad avidity assay for identification of recent HIV-1 infections using dried serum or plasma spots. J Virol Methods 266:114–120. (PMID: 3073874110.1016/j.jviromet.2019.02.002) ; Tsai CW, Li CH, Lam RWK, Li CK, Ho S (2020) Diabetes care in motion: blood glucose estimation using wearable devices. IEEE Consum Electron Mag 9:30–34. (PMID: 10.1109/MCE.2019.2941461) ; Dixon RV et al (2021) Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm Sin B 11:2344–2361. (PMID: 34150486820648910.1016/j.apsb.2021.02.010) ; Blicharz TM et al (2018) Microneedle-based device for the one-step painless collection of capillary blood samples. Nat Biomed Eng 2:151–157. (PMID: 3101571410.1038/s41551-018-0194-1) ; Li T, Barnett A, Rogers KL, Gianchandani YB (2009) A blood sampling microsystem for pharmacokinetic applications: design, fabrication, and initial results. Lab Chip. https://doi.org/10.1039/b910508e. ; Strambini LM et al (2020) Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens Bioelectron 66:162–168. (PMID: 10.1016/j.bios.2014.11.010) ; Jiang X, Lillehoj PB (2020) Microneedle-based skin patch for blood-free rapid diagnostic testing. Microsyst Nanoeng 6:1–11. (PMID: 10.1038/s41378-020-00206-1) ; Liu L, Wang Y, Yao J, Yang C, Ding G (2016) A minimally invasive micro sampler for quantitative sampling with an ultrahigh-aspect-ratio microneedle and a PDMS actuator. Biomed Microdevices 18:59. (PMID: 2737294410.1007/s10544-016-0086-7) ; Li CG, Lee CY, Lee K, Jung H (2013) An optimized hollow microneedle for minimally invasive blood extraction. Biomed Microdevices 15:17–25. (PMID: 2283315510.1007/s10544-012-9683-2) ; Miller PR et al (2014) Microneedle-based transdermal sensor for on-chip potentiometric determination of K+. Adv Healthc Mater 3:876–881. (PMID: 2437614710.1002/adhm.201300541) ; Evens T et al (2021) Producing hollow polymer microneedles using laser ablated molds in an injection molding process. J Micro Nano-Manufacturing 9:1–9. (PMID: 10.1115/1.4051456) ; Chaudhri BP, Ceyssens F, De Moor P, Van Hoof C, Puers R (2010) A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. J Micromech Microeng 20:064006. (PMID: 10.1088/0960-1317/20/6/064006) ; Kashaninejad N et al (2021) Microneedle arrays for sampling and sensing skin interstitial fluid. Chemosensors 9:83. (PMID: 10.3390/chemosensors9040083) ; Miller PR et al (2018) Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun Biol 1:173. (PMID: 30374463619725310.1038/s42003-018-0170-z) ; Kolluru C et al (2019) Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch. Biomed Microdevices. https://doi.org/10.1007/s10544-019-0363-3. ; Romanyuk AV et al (2014) Collection of analytes from microneedle patches. Anal Chem 86:10520–10523. (PMID: 25367229422263210.1021/ac503823p) ; Lee H et al (2019) Porous microneedle integrated in paper based glucose sensor for fluid channel interface. In: 2019 IEEE CPMT symposium Japan, ICSJ 2019, pp 39–42. ; Takeuchi K et al (2022) Microfluidic chip connected to porous microneedle array for continuous ISF sampling. Drug Deliv Transl Res 12:435–443. (PMID: 3473971710.1007/s13346-021-01050-0) ; Li CG et al (2015) One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab on a Chip 15(16) 3286–3292. https://doi.org/10.1039/C5LC00669D. ; Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983. (PMID: 1690014610.1038/nbt1235) ; Wide L, Gemzell CA (1960) An immunological pregnancy test. Acta Endocrinol 35:261–267. ; Scheiblauer H et al (2021) Comparative sensitivity evaluation for 122 CE-marked rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021. Eur Secur 26:2100441. ; Gray ER et al (2018) A landscape review of antigen detection for early HIV diagnosis. AIDS 32:2089–2102. (PMID: 3010265910.1097/QAD.0000000000001982) ; Mortimer PP, Parry JV (1994) Detection of antibody to HIV in saliva: a brief review. Clin Diagn Virol 2:231–243. (PMID: 1556676910.1016/0928-0197(94)90048-5) ; Tian T, Bi Y, Xu X, Zhu Z, Yang C (2018) Integrated paper-based microfluidic devices for point-of-care testing. Anal Methods 10:3567–3581. (PMID: 10.1039/C8AY00864G) ; Kim D, Kim S, Kim S (2020) An innovative blood plasma separation method for a paper-based analytical device using chitosan functionalization. Analyst 145:5491–5499. (PMID: 3259745610.1039/D0AN00500B) ; Nilghaz A, Shen W (2015) Low-cost blood plasma separation method using salt functionalized paper. RSC Adv 5:53172–53179. (PMID: 10.1039/C5RA01468A) ; Bhamla MS et al (2017) Hand-powered ultralow-cost paper centrifuge. Nat Biomed Eng 1:1–7. (PMID: 10.1038/s41551-016-0009) ; Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392–3398. (PMID: 2278244910.1039/c2lc21299d) ; Zhang H et al (2021) A low-cost mobile platform for whole blood glucose monitoring using colorimetric method. Microchem J 162:105814. (PMID: 10.1016/j.microc.2020.105814) ; Choobbari ML, Rad MB, Jahanshahi A, Ghourchian H (2020) A sample volume independent paper microfluidic device for quantifying glucose in real human plasma. Microfluid Nanofluidics 24:74. (PMID: 10.1007/s10404-020-02382-y) ; Tenda K et al (2018) Paper-based antibody detection devices using bioluminescent BRET-switching sensor proteins. Angew Chem Int Ed 57:15369–15373. (PMID: 10.1002/anie.201808070) ; Lutz BR, Trinh P, Ball C, Fu E, Yager P (2011) Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 11:4274–4278. (PMID: 22037591489212110.1039/c1lc20758j) ; Tu D, Holderby A, Dean J, Mabbott S, Coté GL (2021) Paper microfluidic device with a horizontal motion valve and a localized delay for automatic control of a multistep assay. Anal Chem 93:4497–4505. (PMID: 3366098310.1021/acs.analchem.0c04706) ; Fu H et al (2019) A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays. Microsyst Nanoeng 5:1–12. (PMID: 10.1038/s41378-019-0091-0) ; Hui CY, Liu M, Li Y, Brennan JD (2018) A paper sensor printed with multifunctional bio/nano materials. Angew Chem Int Ed 57:4549–4553. (PMID: 10.1002/anie.201712903) ; Liu X et al (2022) A paper-based all-in-one origami nanobiosensor for point-of-care diagnosis of cardiovascular diseases. https://papers.ssrn.com/abstract=4060674. ; Chen C-A et al (2021) An electricity- and instrument-free infectious disease sensor based on a 3D origami paper-based analytical device. Lab Chip 21:1908–1915. (PMID: 3400862810.1039/D1LC00079A) ; Lee M-J et al (2022) Pumpless three-dimensional photo paper–based microfluidic analytical device for automatic detection of thioredoxin-1 using enzyme-linked immunosorbent assay. Anal Bioanal Chem 414:3219–3230. (PMID: 3476705310.1007/s00216-021-03747-0) ; Deraney RN, Mace CR, Rolland JP, Schonhorn JE (2016) Multiplexed, patterned-paper immunoassay for detection of malaria and dengue fever. Anal Chem 88:6161–6165. (PMID: 2718689310.1021/acs.analchem.6b00854) ; Hu SW et al (2017) Dual-functional carbon dots pattern on paper chips for Fe3+ and ferritin analysis in whole blood. Anal Chem 89:2131–2137. (PMID: 2802903510.1021/acs.analchem.6b04891) ; Park J, Park JK (2017) Pressed region integrated 3D paper-based microfluidic device that enables vertical flow multistep assays for the detection of C-reactive protein based on programmed reagent loading. Sensors Actuators B Chem 246:1049–1055. (PMID: 10.1016/j.snb.2017.02.150) ; Mu X et al (2015) A paper-based skin patch for the diagnostic screening of cystic fibrosis. Chem Commun 51:6365–6368. (PMID: 10.1039/C5CC00717H) ; Yamada K, Henares TG, Suzuki K, Citterio D (2015) Distance-based tear Lactoferrin assay on microfluidic paper device using interfacial interactions on surface-modified cellulose. ACS Appl Mater Interfaces 7:24864–24875. (PMID: 2648837110.1021/acsami.5b08124) ; Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS (2013) Simple, distance-based measurement for paper analytical devices. Lab Chip 13:2397–2404. (PMID: 2365762710.1039/c3lc50072a) ; Tian T et al (2016) Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (μPADs) for point-of-care testing (POCT). Biosens Bioelectron 77:537–542. (PMID: 2647409410.1016/j.bios.2015.09.049) ; Li M, Tian J, Al-Tamimi M, Shen W (2012) Paper-based blood typing device that reports patient’s blood type ‘in writing’. Angew Chem Int Ed Engl 51:5497–5501. (PMID: 2251146610.1002/anie.201201822) ; Lan T, Zhang J, Lu Y (2016) Transforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile health. Biotechnol Adv 34:331–341. (PMID: 26946282483367110.1016/j.biotechadv.2016.03.002) ; Ghosh S et al (2020) A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone-based POCT detecting malaria. Microsyst Nanoeng 6:5. (PMID: 34567620843340110.1038/s41378-019-0108-8) ; Tsao YT et al (2021) Point-of-care semen analysis of patients with infertility via smartphone and colorimetric paper-based diagnostic device. Bioeng Transl Med 6:1–11. (PMID: 10.1002/btm2.10176) ; Tian T et al (2017) Integrated distance-based origami paper analytical device for one-step visualized analysis. ACS Appl Mater Interfaces 9:30480–30487. (PMID: 2881643610.1021/acsami.7b09717) ; Achille C et al (2021) Microfluidic devices: 3D printing of monolithic capillarity-driven microfluidic devices for diagnostics (Adv. Mater. 25/2021). Adv Mater 33:2170192. (PMID: 10.1002/adma.202170192) ; Zimmermann M, Hunziker P, Delamarche E (2009) Autonomous capillary system for one-step immunoassays. Biomed Microdevices 11:1–8. (PMID: 1881064310.1007/s10544-008-9187-2) ; Hemmig E, Temiz Y, Gökçe O, Lovchik RD, Delamarche E (2020) Transposing lateral flow immunoassays to capillary-driven microfluidics using self-coalescence modules and capillary-assembled receptor carriers. Anal Chem 92:940–946. (PMID: 3186027610.1021/acs.analchem.9b03792) ; Yafia M et al (2022) Microfluidic chain reaction of structurally programmed capillary flow events. Nature 605:464–469. (PMID: 3558534510.1038/s41586-022-04683-4) ; Qu JH et al (2022) Point-of-care therapeutic drug monitoring of adalimumab by integrating a FO-SPR biosensor in a self-powered microfluidic cartridge. Biosens Bioelectron 206:114125. (PMID: 3525531510.1016/j.bios.2022.114125) ; Ordutowski H et al (2022) Next generation point-of-care test for therapeutic drug monitoring of adalimumab in patients diagnosed with autoimmune diseases. Biosens Bioelectron 208:114189. (PMID: 3536642710.1016/j.bios.2022.114189) ; Mullis K et al (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273. (PMID: 347272310.1101/SQB.1986.051.01.032) ; Okeke IN, Ihekweazu C (2021) The importance of molecular diagnostics for infectious diseases in low-resource settings. Nat Rev Microbiol 19:547–548. (PMID: 34183821823777110.1038/s41579-021-00598-5) ; Elshafie S, Taj-Aldeen SJ (2016) Emerging resistant serotypes of invasive Streptococcus pneumoniae. Infect Drug Resist 9:153–160. (PMID: 27418844493504510.2147/IDR.S102410) ; Okeke IN et al (2020) Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Glob Health 5:1–9. (PMID: 10.1136/bmjgh-2020-003622) ; Mauk MG, Song J, Tong Y, Bau HH, Liu C (2015) Translating nucleic acid amplification assays to the microscale: lab on a chip for point-of-care molecular diagnostics. https://doi.org/10.2174/1573411012666151020212121. ; Zhang JY, Bender AT, Boyle DS, Drain PK, Posner JD (2021) Current state of commercial point-of-care nucleic acid tests for infectious diseases. Analyst 146:2449–2462. (PMID: 33899053813984010.1039/D0AN01988G) ; Saeed M et al (2017) GeneXpert technology: a breakthrough for the diagnosis of tuberculous pericarditis and pleuritis in less than 2 hours. Saudi Med J 38:699–705. (PMID: 28674714555627610.15537/smj.2017.7.17694) ; Saeed M et al (2017) Genexpert: a new tool for the rapid detection of rifampicin resistance in mycobacterium tuberculosis. J Pak Med Assoc 67:270–274. (PMID: 28138184) ; Huang H et al (2019) Evaluation, validation, and implementation of the Idylla system as rapid molecular testing for precision medicine. J Mol Diagn 21:862–872. (PMID: 3144384410.1016/j.jmoldx.2019.05.007) ; Poritz MA et al (2011) Filmarray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One 6:e26047. (PMID: 22039434319845710.1371/journal.pone.0026047) ; Nie S et al (2014) Evaluation of alere i influenza a&B for rapid detection of influenza viruses a and B. J Clin Microbiol 52:3339–3344. (PMID: 24989611431316010.1128/JCM.01132-14) ; Chen D et al (2010) An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed Microdevices 12:705–719. (PMID: 20401537292474410.1007/s10544-010-9423-4) ; Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486. (PMID: 2259215010.1039/c2lc40100b) ; De Paz HD, Brotons P, Munoz-Almagro C (2014) Molecular isothermal techniques for combating infectious diseases: towards low-cost point-of-care diagnostics. Expert Rev Mol Diagn 14:827–844. (PMID: 25052202710370810.1586/14737159.2014.940319) ; Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors – occurrence, properties and removal. J Appl Microbiol 113:1014–1026. (PMID: 2274796410.1111/j.1365-2672.2012.05384.x) ; Li J, Macdonald J (2014) Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 64:196–211. (PMID: 2521810410.1016/j.bios.2014.08.069) ; Fakruddin M et al (2013) Nucleic acid amplification: alternative methods of polymerase chain reaction. J Pharm Bioallied Sci 5:245–252. (PMID: 24302831383173610.4103/0975-7406.120066) ; Obande GA, Singh KKB (2020) Current and future perspectives on isothermal nucleic acid amplification technologies for diagnosing infections. Infect Drug Resist 13:455–483. (PMID: 32104017702480110.2147/IDR.S217571) ; Fronczek CF, Park TS, Harshman DK, Nicolini AM, Yoon JY (2014) Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv 4:11103–11110. (PMID: 10.1039/c3ra47688j) ; Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Böhringer KF (2012) A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12:174–181. (PMID: 2206833610.1039/C1LC20622B) ; Rodriguez NM et al (2015) Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of influenza a (H1N1) from clinical specimens. Anal Chem 87:7872–7879. (PMID: 26125635487839010.1021/acs.analchem.5b01594) ; Rodriguez NM, Wong WS, Liu L, Dewar R, Klapperich CM (2016) A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 16:753–763. (PMID: 26785636474782510.1039/C5LC01392E) ; Rohrman BA, Richards-Kortum RR (2012) A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12:3082–3088. (PMID: 22733333356900110.1039/c2lc40423k) ; Cordray MS, Richards-Kortum RR (2015) A paper and plastic device for the combined isothermal amplification and lateral flow detection of plasmodium DNA. Malar J 14:1–8. (PMID: 10.1186/s12936-015-0995-6) ; Connelly JT, Rolland JP, Whitesides GM (2015) ‘Paper machine’ for molecular diagnostics. Anal Chem 87:7595–7601. (PMID: 2610486910.1021/acs.analchem.5b00411) ; Reboud J et al (2019) Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc Natl Acad Sci USA 116:4834–4842. (PMID: 30782834642147110.1073/pnas.1812296116) ; Caliendo AM et al (2013) Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis 57(Suppl 3):139–170. (PMID: 10.1093/cid/cit578) ; Lafleur LK et al (2016) A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip 16:3777–3787. (PMID: 2754989710.1039/C6LC00677A) ; Tang R et al (2017) A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab Chip 17:1270–1279. (PMID: 2827110410.1039/C6LC01586G) ; Yeh E-C et al (2017) Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci Adv 3:1–11. (PMID: 10.1126/sciadv.1501645) ; Buser JR et al (2015) Precision chemical heating for diagnostic devices. Lab Chip 15:4423–4432. (PMID: 265036401024995310.1039/C5LC01053E) ; Liao S-C et al (2016) Smart cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sensors Actuators B Chem 229:232–238. (PMID: 10.1016/j.snb.2016.01.073) ; Singleton J et al (2013) Instrument-free exothermic heating with phase change temperature control for paper microfluidic devices. SPIE 86:3279–3288. ; Goertz JP et al (2018) Multistage chemical heating for instrument-free biosensing. ACS Appl Mater Interfaces 10:33043–33048. (PMID: 3020744510.1021/acsami.8b11611) ; Huang S et al (2013) Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis. PLoS One 8:1–10. ; Liu C, Mauk MG, Hart R, Qiu X, Bau HH (2011) A self-heating cartridge for molecular diagnostics. Lab Chip 11:2686–2692. (PMID: 2173498610.1039/c1lc20345b) ; Vloemans D, Dal Dosso F, Verboven P, Nicolai B, Lammertyn J (2020) Exploiting phase change materials in tunable passive heating system for low-resource point-of-care diagnostics. Appl Therm Eng 173:115269. (PMID: 10.1016/j.applthermaleng.2020.115269)
  • Contributed Indexing: Keywords: CapillaryCapillary forces; In vitro diagnostics; Point-of-care testing; Remote microsampling; Self-powered microfluidics
  • Entry Date(s): Date Created: 20240516 Date Completed: 20240516 Latest Revision: 20240520
  • Update Code: 20240520

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -