Zum Hauptinhalt springen

Oxymatrine attenuates sepsis-induced inflammation and organ injury via inhibition of HMGB1/RAGE/NF-κB signaling pathway.

He, J ; Qin, W ; et al.
In: Drug development research, Jg. 85 (2024-06-01), Heft 4, S. e22219
Online academicJournal

Titel:
Oxymatrine attenuates sepsis-induced inflammation and organ injury via inhibition of HMGB1/RAGE/NF-κB signaling pathway.
Autor/in / Beteiligte Person: He, J ; Qin, W ; Jiang, S ; Lin, Y ; Yang, R ; Xu, M ; Liu, Q
Link:
Zeitschrift: Drug development research, Jg. 85 (2024-06-01), Heft 4, S. e22219
Veröffentlichung: New York Ny : Wiley-Liss ; <i>Original Publication</i>: New York : Alan R. Liss, c1981-, 2024
Medientyp: academicJournal
ISSN: 1098-2299 (electronic)
DOI: 10.1002/ddr.22219
Schlagwort:
  • Animals
  • Humans
  • Mice
  • Male
  • Anti-Inflammatory Agents pharmacology
  • Anti-Inflammatory Agents therapeutic use
  • THP-1 Cells
  • Mice, Inbred C57BL
  • Macrophages drug effects
  • Macrophages metabolism
  • Matrines
  • Alkaloids pharmacology
  • Alkaloids therapeutic use
  • Quinolizines pharmacology
  • Quinolizines therapeutic use
  • Sepsis drug therapy
  • Sepsis complications
  • Sepsis metabolism
  • NF-kappa B metabolism
  • HMGB1 Protein metabolism
  • HMGB1 Protein antagonists & inhibitors
  • Receptor for Advanced Glycation End Products metabolism
  • Signal Transduction drug effects
  • Inflammation drug therapy
  • Inflammation metabolism
  • Lipopolysaccharides
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Drug Dev Res] 2024 Jun; Vol. 85 (4), pp. e22219.
  • MeSH Terms: Alkaloids* / pharmacology ; Alkaloids* / therapeutic use ; Quinolizines* / pharmacology ; Quinolizines* / therapeutic use ; Sepsis* / drug therapy ; Sepsis* / complications ; Sepsis* / metabolism ; NF-kappa B* / metabolism ; HMGB1 Protein* / metabolism ; HMGB1 Protein* / antagonists & inhibitors ; Receptor for Advanced Glycation End Products* / metabolism ; Signal Transduction* / drug effects ; Inflammation* / drug therapy ; Inflammation* / metabolism ; Lipopolysaccharides* ; Animals ; Humans ; Mice ; Male ; Anti-Inflammatory Agents / pharmacology ; Anti-Inflammatory Agents / therapeutic use ; THP-1 Cells ; Mice, Inbred C57BL ; Macrophages / drug effects ; Macrophages / metabolism ; Matrines
  • References: Achouiti, A., de Vos, A. F., de Beer, R., Florquin, S., van 't Veer, C., & van der Poll, T. (2013). Limited role of the receptor for advanced glycation end products during streptococcus pneumoniae bacteremia. Journal of Innate Immunity, 5, 603–612. ; Cannizzaro, L., Rossoni, G., Savi, F., Altomare, A., Marinello, C., Saethang, T., Carini, M., Payne, D. M., Pisitkun, T., Aldini, G., & Leelahavanichkul, A. (2017). Regulatory landscape of AGE‐RAGE‐oxidative stress axis and its modulation by PPARγ activation in high fructose diet‐induced metabolic syndrome. Nutrition & Metabolism, 14, 5. ; Chakraborty, R., Bhatt, K. H., & Sodhi, A. (2013). High mobility group box 1 protein synergizes with lipopolysaccharide and peptidoglycan for nitric oxide production in mouse peritoneal macrophages in vitro. Molecular Immunology, 54, 48–57. ; Chen, Q., Duan, X., & Fan, H., et al. (2017a). Oxymatrine protects against DSS‐induced colitis via inhibiting the PI3K/AKT signaling pathway. International Immunopharmacology, 53, 149–157. ; Chen, Q., Zhou, H., & Yang, Y., et al. (2017b). Investigating the potential of oxymatrine as a psoriasis therapy. Chemico‐Biological Interactions, 271, 59–66. ; Christaki, E., Lazaridis, N., & Opal, S. M. (2012). Receptor for advanced glycation end products in bacterial infection: Is there a role for immune modulation of receptor for advanced glycation end products in the treatment of sepsis? Current Opinion in Infectious Diseases, 25(3), 304–311. ; Cui, L., Cai, Y., Cheng, W., Liu, G., Zhao, J., Cao, H., Tao, H., Wang, Y., Yin, M., Liu, T., Liu, Y., Huang, P., Liu, Z., Li, K., & Zhao, B. (2017). A novel, multi‐target natural drug candidate, matrine, improves cognitive deficits in alzheimer's disease transgenic mice by inhibiting Aβ aggregation and blocking the RAGE/Aβ axis. Molecular Neurobiology, 54, 1939–1952. ; Fleischmann‐Struzek, C., Mellhammar, L., Rose, N., Cassini, A., Rudd, K. E., Schlattmann, P., Allegranzi, B., & Reinhart, K. (2020). Incidence and mortality of hospital‐ and ICU‐treated sepsis: Results from an updated and expanded systematic review and meta‐analysis. Intensive Care Medicine, 46, 1552–1562. ; Fritz, G. (2011). RAGE: A single receptor fits multiple ligands. Trends in Biochemical Sciences, 36, 625–632. ; Guglielmotto, M., Aragno, M., Tamagno, E., Vercellinatto, I., Visentin, S., Medana, C., Catalano, M. G., Smith, M. A., Perry, G., Danni, O., Boccuzzi, G., & Tabaton, M. (2012). AGEs/RAGE complex upregulates BACE1 via NF‐κB pathway activation. Neurobiology of Aging, 33, 196.e13–196.e27. ; Guirgis, F. W., Brakenridge, S., Sutchu, S., Khadpe, J. D., Robinson, T., Westenbarger, R., Topp, S. T., Kalynych, C. J., Reynolds, J., Dodani, S., Moore, F. A., & Jones, A. E. (2016). The long‐term burden of severe sepsis and septic shock: Sepsis recidivism and organ dysfunction. Journal of Trauma and Acute Care Surgery, 81, 525–532. ; Guirgis, F. W., Khadpe, J. D., Kuntz, G. M., Wears, R. L., Kalynych, C. J., & Jones, A. E. (2014). Persistent organ dysfunction after severe sepsis: A systematic review. Journal of Critical Care, 29, 320–326. ; Halim, C. E., Xinjing, S. L., Fan, L., Bailey Vitarbo, J., Arfuso, F., Tan, C. H., Narula, A. S., Kumar, A. P., Sethi, G., & Ahn, K. S. (2019). Anti‐cancer effects of oxymatrine are mediated through multiple molecular mechanism(s) in tumor models. Pharmacological Research, 147, 104327. ; Hashemian, S. M., Pourhanifeh, M. H., Fadaei, S., Velayati, A. A., Mirzaei, H., & Hamblin, M. R. (2020). Non‐coding RNAs and exosomes: Their role in the pathogenesis of sepsis. Molecular Therapy‐Nucleic Acids, 21, 51–74. ; He, M., Wu, Y., Wang, M., Chen, W., & Jiang, J. (2016). Meta‐analysis of the clinical value of oxymatrine on sustained virological response in chronic hepatitis B. Annals of hepatology, 15(4), 482–491. ; Hendawy, N., Salaheldin, T. H., & Abuelezz, S. A. (2023). PCSK9 inhibition reduces depressive like behavior in CUMS‐exposed rats: Highlights on HMGB1/RAGE/TLR4 pathway, NLRP3 inflammasome complex and IDO‐1. Journal of Neuroimmune Pharmacology, 18, 195–207. ; Huang, M., Cai, S., & Su, J. (2019). The pathogenesis of sepsis and potential therapeutic targets. International Journal of Molecular Sciences, 20, 5376. ; Huang, W. C., Chan, C. C., Wu, S. J., Chen, L. C., Shen, J. J., Kuo, M. L., Chen, M. C., & Liou, C. J. (2014). Matrine attenuates allergic airway inflammation and eosinophil infiltration by suppressing eotaxin and Th2 cytokine production in asthmatic mice. Journal of Ethnopharmacology, 151(1), 470–477. ; Hudson, B. I., & Lippman, M. E. (2018). Targeting RAGE signaling in inflammatory disease. Annual Review of Medicine, 69, 349–364. ; Jarczak, D., & Kluge, S. (2021). Nierhaus A. Sepsis‐pathophysiology and therapeutic concepts. Front Med (Lausanne), 8, 628302. ; Khalid, M., Petroianu, G., & Adem, A. (2022). Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules, 12, 542. ; Klausen, H. H., Bodilsen, A. C., Petersen, J., Bandholm, T., Haupt, T., Sivertsen, D. M., & Andersen, O. (2017). How inflammation underlies physical and organ function in acutely admitted older medical patients. Mechanisms of Ageing and Development, 164, 67–75. ; Lan, X., Zhao, J., Zhang, Y., Chen, Y., Liu, Y., & Xu, F. (2020). Oxymatrine exerts organ‐ and tissue‐protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacological Research, 151, 104541. ; Lee, S.‐A., Kwak, M. S., Kim, S., & Shin, J.‐S. (2014). The role of high mobility group box 1 in innate immunity. Yonsei Medical Journal, 55, 1165. ; Li, J.‐Z., Wu, J.‐H., Yu, S.‐Y., Shao, Q.‐R., & Dong, X.‐M. (2013). Inhibitory effects of paeoniflorin on lysophosphatidylcholine‐induced inflammatory factor production in human umbilical vein endothelial cells. International Journal of Molecular Medicine, 31, 493–497. ; Liu, D., Huang, S. Y., Sun, J. H., Zhang, H. C., Cai, Q. L., Gao, C., Li, L., Cao, J., Xu, F., Zhou, Y., Guan, C. X., Jin, S. W., Deng, J., Fang, X. M., Jiang, J. X., & Zeng, L. (2022). Sepsis‐induced immunosuppression: Mechanisms, diagnosis and current treatment options. Military Medical Research, 9(1), 56. ; Mao, Y. M. (2004). Capsule oxymatrine in treatment of hepatic fibrosis due to chronic viral hepatitis: A randomized, double blind, placebo‐controlled, multicenter clinical study. World Journal of Gastroenterology, 10(22), 3269–3273. ; Ostrand‐Rosenberg, S., Huecksteadt, T., & Sanders, K. (2023). The receptor for advanced glycation endproducts (RAGE) and its ligands S100A8/A9 and high mobility group box protein 1 (HMGB1) are key regulators of myeloid‐derived suppressor cells. Cancers, 15, 1026. ; Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., & Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biology, 2, 411–429. ; Pool, R., Gomez, H., & Kellum, J. A. (2018). Mechanisms of organ dysfunction in sepsis. Critical Care Clinics, 34, 63–80. ; Ren, Y., Li, L., Wang, M.‐M., Cao, L. P., Sun, Z. R., Yang, Z. Z., Zhang, W., Zhang, P., & Nie, S. N. (2021). Pravastatin attenuates sepsis‐induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of Cav‐1/eNOS pathway. International Immunopharmacology, 100, 108077. ; Rudd, K. E., Johnson, S. C., Agesa, K. M., Shackelford, K. A., Tsoi, D., Kievlan, D. R., Colombara, D. V., Ikuta, K. S., Kissoon, N., Finfer, S., Fleischmann‐Struzek, C., Machado, F. R., Reinhart, K. K., Rowan, K., Seymour, C. W., Watson, R. S., West, T. E., Marinho, F., Hay, S. I., … Naghavi, M. (2020). Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study. The Lancet, 395, 200–211. ; Sekino, N., Selim, M., & Shehadah, A. (2022). Sepsis‐associated brain injury: Underlying mechanisms and potential therapeutic strategies for acute and long‐term cognitive impairments. Journal of Neuroinflammation, 19, 101. ; Shao, Y., Shao, X., He, J., Cai, Y., Zhao, J., Chen, F., Tao, H., Yin, Z., Tan, X., He, Y., Lin, Y., Li, K., & Cui, L. (2017). The promoter polymorphisms of receptor for advanced glycation end products were associated with the susceptibility and progression of sepsis. Clinical Genetics, 91, 564–575. ; Shi, H. J., Zhou, H., Ma, A. L., Wang, L., Gao, Q., Zhang, N., Song, H. B., Bo, K. P., & Ma, W. (2019). Oxymatrine therapy inhibited epidermal cell proliferation and apoptosis in severe plaque psoriasis. British Journal of Dermatology, 181(5), 1028–1037. ; Singer, M., Deutschman, C. S., Seymour, C. W., Shankar‐Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll, T., Vincent, J. L., & Angus, D. C. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis‐3). Journal of the American Medical Association, 315, 801. ; Singh, H., & Agrawal, D. K. (2022a). Therapeutic potential of targeting the HMGB1/RAGE axis in inflammatory diseases. Molecules, 27, 7311. ; Singh, H., & Agrawal, D. K. (2022b). Therapeutic potential of targeting the HMGB1/RAGE axis in inflammatory diseases. Molecules, 27(21), 7311. ; Sun, M., Cao, H., Sun, L., Dong, S., Bian, Y., Han, J., Zhang, L., Ren, S., Hu, Y., Liu, C., Xu, L., & Liu, P. (2012). Antitumor activities of kushen: Literature review. Evidence‐Based Complementary and Alternative Medicine, 2012, 1–11. ; Taylor, M. D., Fernandes, T. D., Yaipen, O., Higgins, C. E., Capone, C. A., Leisman, D. E., Nedeljkovic‐Kurepa, A., Abraham, M. N., Brewer, M. R., & Deutschman, C. S. (2022). T cell activation and IFNγ modulate organ dysfunction in LPS‐mediated inflammation. Journal of Leukocyte Biology, 112, 221–232. ; Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M., Sevransky, J. E., Sprung, C. L., Douglas, I. S., Jaeschke, R., Osborn, T. M., Nunnally, M. E., Townsend, S. R., Reinhart, K., Kleinpell, R. M., Angus, D. C., Deutschman, C. S., Machado, F. R., Rubenfeld, G. D., … Moreno, R., The Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup*. (2013). Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine, 39, 165–228. ; Ullah, M. A., Loh, Z., Gan, W. J., Zhang, V., Yang, H., Li, J. H., Yamamoto, Y., Schmidt, A. M., Armour, C. L., Hughes, J. M., Phipps, S., & Sukkar, M. B. (2014). Receptor for advanced glycation end products and its ligand high‐mobility group box‐1 mediate allergic airway sensitization and airway inflammation. Journal of Allergy and Clinical Immunology, 134, 440–450.e3. ; Wang, Y., Shou, Z., Fan, H., Xu, M., Chen, Q., Tang, Q., Liu, X., Wu, H., Zhang, M., Yu, T., Deng, S., & Liu, Y. (2019). Protective effects of oxymatrine against DSS‐induced acute intestinal inflammation in mice via blocking the RhoA/ROCK signaling pathway. Bioscience Reports, 39(7), BSR20182297. ; Xu, J., Wang, K.‐Q., Xu, W.‐H., Li, Y. H., Qi, Y., Wu, H. Y., Li, J. Z., He, Z. G., Hu, H. G., Wang, Y., & Zhang, J. P. (2016). The matrine derivate MASM prolongs survival, attenuates inflammation, and reduces organ injury in murine established lethal sepsis. Journal of Infectious Diseases, 214, 1762–1772. ; Xu, M., Shao, Y., Lin, K., Liu, Y., Lin, Y., Lin, Y., Yang, R., Liu, L., Yin, M., Liao, S., Jiang, S., & He, J. (2023). Genetic Arg‐304‐His substitution in GRK5 protects against sepsis progression by alleviating NF‐κB‐mediated inflammation. International Immunopharmacology, 115, 109629. ; Xu, M., Wang, W., Pei, X., SUN, S., XU, M., & LIU, Z. (2014). Protective effects of the combination of sodium ferulate and oxymatrine on cecal ligation and puncture‐induced sepsis in mice. Experimental and Therapeutic Medicine, 7(5), 1297–1304. ; Yang, C.‐H., Tsai, P.‐S., Wang, T.‐Y., & Huang, C.‐J. (2009). Dexmedetomidine–ketamine combination mitigates acute lung injury in haemorrhagic shock rats. Resuscitation, 80, 1204–1210. ; Zhang, M. H., Li, G. Z., Xu, H., Zhang, J., & Cao, J. (2008). Effect of oxymatrine on NF‐kappaB and other cell factors in rats lung tissue with septic shock. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 33(20), 2390–2394. ; Zhang, X., Jiang, W., Zhou, A. L., Zhao, M., & Jiang, D. R. (2017). Inhibitory effect of oxymatrine on hepatocyte apoptosis via TLR4/PI3K/Akt/GSK‐3β signaling pathway. World Journal of Gastroenterology, 23(21), 3839–3849. ; Zhang, Y., & Ning, B. (2021). Signaling pathways and intervention therapies in sepsis. Signal Transduction and Targeted Therapy, 6(1), 407. ; Zhao, H., Zhang, Z., Chai, X., Li, G., Cui, H., Wang, H., Meng, Y., Liu, H., Wang, J., Li, R., Bai, Z., & Xiao, X. (2016). Oxymatrine attenuates CCl4‐induced hepatic fibrosis via modulation of TLR4‐dependent inflammatory and TGF‐β1 signaling pathways. International Immunopharmacology, 36, 249–255. ; Zhao, J., Wei, Q., Guo, S., et al. (2022). In Z. Dong, (Ed.), Efficacy of Oxymatrine Plus Antiviral in the Treatment of Sepsis and Its Effect on the Levels of Endotoxin and Inflammatory Factors (pp. 1–5). Evid Based Complement Alternat Med. ; Zhao, P., Zhou, R., Li, H. N., Yao, W. X., Qiao, H. Q., Wang, S. J., Niu, Y., Sun, T., Li, Y. X., & Yu, J. Q. (2015). Oxymatrine attenuated hypoxic‐ischemic brain damage in neonatal rats via improving antioxidant enzyme activities and inhibiting cell death. Neurochemistry International, 89, 17–27. ; Zhou, H., Shi, H. J., Yang, J., Chen, W. G., Xia, L., Song, H. B., Bo, K. P., & Ma, W. (2017). Efficacy of oxymatrine for treatment and relapse suppression of severe plaque psoriasis: Results from a single‐blinded randomized controlled clinical trial. British Journal of Dermatology, 176(6), 1446–1455. ; Zhu, C. S., Qiang, X., Chen, W., Li, J., Lan, X., Yang, H., Gong, J., Becker, L., Wang, P., Tracey, K. J., & Wang, H. (2023). Identification of procathepsin L (pCTS‐L)–neutralizing monoclonal antibodies to treat potentially lethal sepsis. Science Advances, 9, eadf4313.
  • Grant Information: 20211464 Research Project of Traditional Chinese Medicine Bureau of Guangdong Province; 2022SRC004 Science and Technology Innovation Leading talents Project of Jieyang City; skjcx062 Science and Technology Project of Jieyang City; 2023A1515012477 Natural Science Foundation of Guangdong Province
  • Contributed Indexing: Keywords: RAGE/HMGB1/NF‐κB; oxymatrine; sepsis
  • Substance Nomenclature: 85U4C366QS (oxymatrine) ; 0 (Alkaloids) ; 0 (Quinolizines) ; 0 (NF-kappa B) ; 0 (HMGB1 Protein) ; 0 (Receptor for Advanced Glycation End Products) ; 0 (Lipopolysaccharides) ; 0 (Anti-Inflammatory Agents) ; 0 (Matrines)
  • Entry Date(s): Date Created: 20240607 Date Completed: 20240607 Latest Revision: 20240614
  • Update Code: 20240614

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -