Zum Hauptinhalt springen

Impacts of conservation agriculture on crop yield and soil carbon sequestration: a meta-analysis in the Indian subcontinent.

Padbhushan, R ; Kumar, U ; et al.
In: Environmental geochemistry and health, Jg. 46 (2024-06-15), Heft 7, S. 251
Online academicJournal

Titel:
Impacts of conservation agriculture on crop yield and soil carbon sequestration: a meta-analysis in the Indian subcontinent.
Autor/in / Beteiligte Person: Padbhushan, R ; Kumar, U ; Sinha, AK ; Datta, A ; Mondal, S ; Rana, DS ; Mitra, B ; Bhattacharya, PM ; Kaviraj, M ; Kumar, R ; Bijay-Singh
Link:
Zeitschrift: Environmental geochemistry and health, Jg. 46 (2024-06-15), Heft 7, S. 251
Veröffentlichung: 1999- : Dordrecht : Kluwer Academic Publishers ; <i>Original Publication</i>: Kew, Surrey : Science and Technology Letters, 1985-, 2024
Medientyp: academicJournal
ISSN: 1573-2983 (electronic)
DOI: 10.1007/s10653-024-02027-x
Schlagwort:
  • India
  • Carbon analysis
  • Carbon Sequestration
  • Soil chemistry
  • Agriculture methods
  • Crops, Agricultural
  • Conservation of Natural Resources
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Meta-Analysis
  • Language: English
  • [Environ Geochem Health] 2024 Jun 15; Vol. 46 (7), pp. 251. <i>Date of Electronic Publication: </i>2024 Jun 15.
  • MeSH Terms: Carbon Sequestration* ; Soil* / chemistry ; Agriculture* / methods ; Crops, Agricultural* ; Conservation of Natural Resources* ; India ; Carbon / analysis
  • References: Adams, D. C., Gurevitch, J., & Rosenberg, M. S. (1997). Resampling tests for meta-analysis of ecological data. Ecology, 78, 1277–1283. (PMID: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2) ; Akram, R., Turan, V., Wahid, A., et al. (2018). Paddy land pollutants and their role in climate change. In M. Hashmi & A. Varma (Eds.), Environmental pollution of paddy soils. Soil biology. (Vol. 53). Springer. https://doi.org/10.1007/978-3-319-93671-0_7. (PMID: 10.1007/978-3-319-93671-0_7) ; Allam, M., Radicetti, E., Petroselli, V., & Mancinelli, R. (2021). Meta-analysis approach to assess the effects of soil tillage and fertilization source under different cropping systems. Agriculture, 11, 823. https://doi.org/10.3390/agriculture11090823. (PMID: 10.3390/agriculture11090823) ; Bauer, A., & Black, A. L. (1994). Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal, 58, 185–193. (PMID: 10.2136/sssaj1994.03615995005800010027x) ; Bax, L., Yu, L. M., Ikeda, N., & Moons, K. G. (2007). A systematic comparison of software dedicated to meta-analysis of causal studies. BMC Medical Research Methodology, 7, 40. (PMID: 10.1186/1471-2288-7-40) ; Bhan, S., & Behera, U. K. (2014). Conservation agriculture in India–problems, prospects and policy issues. International Soil and Water Conservation Research, 2(4), 1–12. https://doi.org/10.1016/s2095-6339(15)30053-8. (PMID: 10.1016/s2095-6339(15)30053-8) ; Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. Springer Nature Applied Science, 3, 518. ; Campbell, C. A., McConkey, B. G., Zentner, R., Selles, F., & Curtin, D. (1996). Long-term effects of tillage and crop rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Canadian Journal of Soil Science, 76(3), 395–401. (PMID: 10.4141/cjss96-047) ; Canarini, A., Carrillo, Y., Mariotte, P., Ingram, L., & Dijkstra, F. A. (2016). Soil microbial community resistance to drought and links to C stabilization in an Australian grassland. Soil Biology & Biochemistry, 103, 171–180. (PMID: 10.1016/j.soilbio.2016.08.024) ; Chaki, A. K., Gaydon, D. S., Dalal, R. C., Bellotti, W. D., Gathala, M. K., Hossain, A., Siddquie, N. E. A., & Menzies, N. W. (2021). Puddled and zero-till unpuddled transplanted rice are each best suited to different environments – An example from two diverse locations in the Eastern Gangetic Plains of Bangladesh. Field Crops Research, 262, 108031. https://doi.org/10.1016/j.fcr.2020.108031. (PMID: 10.1016/j.fcr.2020.108031) ; Chakraborty, D., Ladha, J. K., Rana, D. S., Jat, M. L., Gathala, M. K., Yadav, S., Rao, A. N., Ramesha, M. S., & Raman, A. (2017). A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Scientific Reports, 7, 9342. (PMID: 10.1038/s41598-017-09742-9) ; Charles, H., Godfray, J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Transactions of the Royal Society b: Biological Sciences, 369(1639), 20120273. https://doi.org/10.1098/rstb.2012.0273. (PMID: 10.1098/rstb.2012.0273) ; Chivenge, P. P., Murwira, H. K., Giller, K. E., Mapfumo, P., & Six, J. (2007). Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil & Tillage Research, 94(2), 328–337. ; Choudhury, B. U., Fiyaz, A. R., Mohapatra, K. P., & Ngachan, S. (2016). Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of North-Eastern Himalayan region of India. Land Degradation & Development, 27, 1163–1174. https://doi.org/10.1002/ldr.2338. (PMID: 10.1002/ldr.2338) ; Corbeels, M., Sakyi, R.K., Kühne, R.F. and Whitbread, A. (2014). Meta-analysis of crop responses to conservation agriculture in sub-Saharan Africa. CCAFS Report No. 12. Copenhagen: CGIAR research program on climate change, agriculture and food security (CCAFS). Available online at: www.ccafs.cgiar.org . ; Crystal-Ornelas, R., Thapa, R., & Tully, K. L. (2021). Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agriculture, Ecosystems & Environment. https://doi.org/10.1016/j.agee.2021.107356. (PMID: 10.1016/j.agee.2021.107356) ; Cusser, S., Bahlai, C., Swinton, S. M., Robertson, G. P., & Haddad, N. M. (2020). Long-term research avoids spurious and misleading trends in sustainability attributes of no-till. Global Change Biology, 26(6), 3715–3725. https://doi.org/10.1111/gcb.15080. (PMID: 10.1111/gcb.15080) ; Dahlgren, R. A., Boettinger, J. L., Huntington, G. L., & Amundson, R. G. (1997). Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma, 78, 207–236. (PMID: 10.1016/S0016-7061(97)00034-7) ; Datta, A., Jat, H. S., Yadav, A. K., Choudhary, M., Sharma, P. C., Rai, M., Singh, L. K., Majumder, S. P., Choudhary, V., & Jat, M. L. (2019). Carbon mineralization in soil as influenced by crop residue type and placement in an Alfisols of Northwest India. Carbon Management, 10(1), 37–50. https://doi.org/10.1080/17583004.2018.1544830. (PMID: 10.1080/17583004.2018.1544830) ; Dexter, A. R. (2004). Soil physical quality: Part I. Theory, effects of soil texture density, and organic matter, and effects on root growth. Geoderma, 120(3–4), 201–214. https://doi.org/10.1016/j.geoderma.2003.09.004. (PMID: 10.1016/j.geoderma.2003.09.004) ; Erenstein, O., & Laxmi, V. (2008). Zero tillage impacts in India’s rice–wheatsystems: A review. Soil and Tillage Research, 100, 1–14. https://doi.org/10.1016/j.still.2008.05.001. (PMID: 10.1016/j.still.2008.05.001) ; FAO. (2019). Conservation agriculture. Available online at: http://www.fao.org/conservation-agriculture/overview/what-is-conservation-agriculture/en/ . Accessed August 2019. ; Feng, Qi., An, C., Chen, Z., & Wang, Z. (2020). Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renewable and Sustainable Energy Reviews, 133, 110293. https://doi.org/10.1016/j.rser.2020.110293. (PMID: 10.1016/j.rser.2020.110293) ; Foley, J., Ramankutty, N., Brauman, K., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. https://doi.org/10.1038/nature10452. (PMID: 10.1038/nature10452) ; Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., et al. (2017). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 6(1), 1–48. (PMID: 10.1186/s13750-016-0079-2) ; Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150–1156. (PMID: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2) ; Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society b: Biological Sciences, 363, 543–555. (PMID: 10.1098/rstb.2007.2169) ; Howeler, R. H., Ezumah, H. C., & Midmore, D. J. (1993). Tillage systems for root and tuber crops in the tropics. Soil and Tillage Research, 27(1–4), 211–240. https://doi.org/10.1016/0167-1987(93)90069-2. (PMID: 10.1016/0167-1987(93)90069-2) ; Jat, H. S., Ashim Datta, P. C., Sharma, V. K., Yadav, A. K., Choudhary, M., Vishu Choudhary, M. K., Gathala, D. K., Sharma, M. L., Jat, N. P. S., Yaduvanshi, G. S., & McDonald, A. (2017). Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Archives of Agronomy and Soil Science, 64(4), 531–545. https://doi.org/10.1080/03650340.2017.1359415. (PMID: 10.1080/03650340.2017.1359415) ; Jat, H. S., Datta, A., Choudhary, M., Sharma, P. C., Yadav, A. K., Choudhary, V., et al. (2019). Climate smart agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. CATENA, 181, 104059. https://doi.org/10.1016/j.catena.2019.05.005. (PMID: 10.1016/j.catena.2019.05.005) ; Jat, M. L., Gathala, M. K., Ladha, J. K., Saharawat, Y. S., Jat, A. S., Kumar, V., Sharma, S. K., Kumar, V., & Gupta, R. (2009). Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil and Tillage Research, 105, 112–121. (PMID: 10.1016/j.still.2009.06.003) ; Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2009). The spread of conservation agriculture: Justification, sustainability and uptake. International Journal of Agricultural Sustainability, 7, 292–320. https://doi.org/10.3763/ijas.2009.0477. (PMID: 10.3763/ijas.2009.0477) ; Kemmitt, S. J., Wright, D., Goulding, K. W. T., & Jones, D. L. (2006). pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology & Biochemistry, 38(5), 898–911. https://doi.org/10.1016/j.soilbio.2005.08.006. (PMID: 10.1016/j.soilbio.2005.08.006) ; Knapp, S., & van der Heijden, M. G. A. (2018). A global meta-analysis of yield stability in organic and conservation agriculture. Nature Communications. https://doi.org/10.1038/s41467-018-05956-1. (PMID: 10.1038/s41467-018-05956-1) ; Krishna, V. V., Keil, A., Jain, M., Zhou, W., Jose, M., Surendran-Padmaja, S., Barba-Escoto, L., Balwinder-Singh, Jat, M. L., & Erenstein, O. (2022). Conservation agriculture benefits Indian farmers, but technology targeting needed for greater impacts. Frontiers in Agronomy. https://doi.org/10.3389/fagro.2022.772732. (PMID: 10.3389/fagro.2022.772732) ; Kumar, U., Nayak, A. K., Shahid, M., Gupta, V. V. S. R., Panneerselvam, P., Mohanty, S., et al. (2018). Continuous application of inorganic and organic fertilizers over 47 Years in paddy soil alters the bacterial community structure and its influence on rice production. Agriculture, Ecosystems & Environment, 262, 65–75. https://doi.org/10.1016/j.agee.2018.04.016. (PMID: 10.1016/j.agee.2018.04.016) ; Lampurlanés, J., Plaza-Bonilla, D., Álvaro-Fuentes, J., & Cantero-Martínez, C. (2016). Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Research, 189, 59–67. https://doi.org/10.1016/j.fcr.2016.02.010. (PMID: 10.1016/j.fcr.2016.02.010) ; Li, Y., Chen, J., Drury, C. F., et al. (2023). The role of conservation agriculture practices in mitigating N 2 O emissions: A meta-analysis. Agronomy for Sustainable Development,, 43, 63. https://doi.org/10.1007/s13593-023-00911-x . (PMID: 10.1007/s13593-023-00911-x) ; Li, H., Van den Bulcke, J., Mendoza, O., Deroo, H., Haesaert, G., Dewitte, K., De Neve, S., & Sleutel, S. (2022). Soil texture controls added organic matter mineralization by regulating soil moisture—evidence from a field experiment in a maritime climate. Geoderma, 410, 115690. https://doi.org/10.1016/j.geoderma.2021.115690. (PMID: 10.1016/j.geoderma.2021.115690) ; Liu, Z., Cao, S., Sun, Z., Wang, H., Qu, S., Lei, N., He, J., & Dong, Q. (2021). Tillage effects on soil properties and crop yield after land reclamation. Scientific Reports, 11, 4611. (PMID: 10.1038/s41598-021-84191-z) ; Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N., Chowdhury, S., Gweon, H. S., Peyton, J. M., Mason, K. E., van Agtmaal, M., et al. (2018). Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 9(1), 3591. (PMID: 10.1038/s41467-018-05980-1) ; Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104, 13268–13272. https://doi.org/10.1073/pnas.0611508104. (PMID: 10.1073/pnas.0611508104) ; Motschenbacher, J., Brye, K. R., & Anders, M. M. (2011). Long-term rice-based cropping system effects on near-surface soil compaction. Agricultural Sciences, 2(02), 117–124. https://doi.org/10.4236/as.2011.22017. (PMID: 10.4236/as.2011.22017) ; Padbhushan, R., Sharma, S., Kumar, U., Rana, D. S., Kohli, A., Kaviraj, M., Parmar, B., Kumar, R., Annapurna, K., Sinha, A. K., & Gupta, V. V. S. R. (2021). Meta-analysis approach to measure the effect of integrated nutrient management on crop performance, microbial activity, and carbon stocks in Indian soils. Frontiers in Environmental Science, 9, 724702. https://doi.org/10.3389/fenvs.2021.724702. (PMID: 10.3389/fenvs.2021.724702) ; Page, K. L., Dang, Y. P., & Dalal, R. C. (2020). The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Frontiers in Sustainable Food Systems, 4, 31. https://doi.org/10.3389/fsufs.2020.00031. (PMID: 10.3389/fsufs.2020.00031) ; Page, K. L., Dang, Y. P., Dalal, R. C., Reeves, S., Thomas, G., Wang, W., et al. (2019). Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period. Soil and Tillage Research, 194, 104319. https://doi.org/10.1016/j.still.2019.104319. (PMID: 10.1016/j.still.2019.104319) ; Pittelkow, C. M., Liang, X., Linquist, B. A., van Groenigen, K. J., Lee, J., Lundy, M. E., van Gestel, N., Six, J., Venterea, R. T., & van Kessel, C. (2015b). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517(7534), 365–368. https://doi.org/10.1038/nature13809. (PMID: 10.1038/nature13809) ; Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., van Groenigen, K. J., Lee, J., van Gestel, N., Six, J., Venterea, R. T., & van Kessel, C. (2015a). When does no-till yield more? A global meta-analysis. Field Crops Research, 183, 156–168. https://doi.org/10.1016/j.fcr.2015.07.020. (PMID: 10.1016/j.fcr.2015.07.020) ; Pradhan, A., Chan, C., Roul, P. K., Halbrendt, J., & Sipes, B. (2018). Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agricultural Systems, 163, 27–35. https://doi.org/10.1016/j.agsy.2017.01.002. (PMID: 10.1016/j.agsy.2017.01.002) ; Prestele, R., Hirsch, A. L., Davin, E. L., Seneviratne, S. I., & Verburg, P. H. (2018). A spatially explicit representation of conservation agriculture for application in global change studies. Global Change Biology, 24, 4038–4053. https://doi.org/10.1111/gcb.14307. (PMID: 10.1111/gcb.14307) ; R Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/ . ; Rajan, G., Keshav, R. A., Zueng-Sang, C., Shree, C. S., & Khem, R. D. (2012). Soil organic carbon sequestration as affected by tillage, crop residue, and nitrogen application in rice–wheat rotation system. Paddy and Water Environment, 10, 95–102. (PMID: 10.1007/s10333-011-0268-0) ; Rakshit, R., Das, A., Padbhushan, R., Sharma, R. P., Saxena, S., & Kumar, S. (2018). Assessment of soil quality and identification of parameters influencing system yield under long-term fertilizer trial. Journal of the Indian Society of Soil Science, 66, 166–171. (PMID: 10.5958/0974-0228.2018.00021.X) ; Robson, A. D., Snowball, K., & Robson, A. D. (1989). Soil acidity and plant growth. Soil Science, 150(6), 903. (PMID: 10.1097/00010694-199012000-00013) ; Rosenberg, M.S., Adams, D.C., Gurevitch, J. (2000). MetaWin: Statistical software for meta-analysis version 2.0. Sinauer Associates, Sunderland, MA, USA. ISBN 0878937609. ; Rusinamhodzi, L., Corbeels, M., Wijk, M. T. V., Rufino, M. C., Nyamangara, J., & Giller, K. E. (2011). A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agronomy for Sustainable Development, 31(4), 657–673. https://doi.org/10.1007/s13593-011-0040-2. (PMID: 10.1007/s13593-011-0040-2) ; Sainju, U. M., Caesar-Tonthat, T., Lenssen, A. W., Evans, R. G., & Kohlberg, R. (2007). Long-term tillage and cropping sequence effects on dryland residue and soil carbon fractions. Soil Science Society of America Journal, 71, 1730–1739. (PMID: 10.2136/sssaj2006.0433) ; Sainju, U. M., Lenssen, A. W., Allen, B. L., Stevens, W. B., & Jabro, J. D. (2017). Soil total carbon and nitrogen and crop yield after eight years of tillage, crop rotation, and cultural practice. Heliyon, 3, e00481. https://doi.org/10.1016/j.heliyon.2017.e00481. (PMID: 10.1016/j.heliyon.2017.e00481) ; Shao, S., Zhao, Y., Zhang, W., Hu, G., Xie, H., Yan, J., et al. (2017). Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biology & Biochemistry, 114, 114–120. (PMID: 10.1016/j.soilbio.2017.07.007) ; Sharma, S., Padbhushan, R., & Kumar, U. (2019). Integrated nutrient management in rice–wheat cropping system: An evidence on sustainability in the Indian subcontinent through meta-analysis. Agronomy, 9, 71. https://doi.org/10.3390/agronomy9020071. (PMID: 10.3390/agronomy9020071) ; Sidhu, H. S., Jat, M. L., Singh, T., Sidhu, R. K., Gupta, N., Singh, P., Singh, P., Jat, H. S., & Gerard, B. (2019). Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agricultural Water Management, 216, 273–283. https://doi.org/10.1016/j.agwat.2019.02.019. (PMID: 10.1016/j.agwat.2019.02.019) ; Singh, R., Erenstein, O., Saharawat, Y. S., Chaudhary, N., & Jat, M. L. (2012). Adoption analysis of resource-conserving technologies in rice (Oryza sativa)-wheat (Triticum aestivum) cropping system of South Asia. The Indian Journal of Agricultural Sciences, 82, 405–409. (PMID: 10.56093/ijas.v82i5.17798) ; Sinha, A. K., Ghosh, A., Dhar, T., Bhattacharya, P. M., Mitra, B., Rakesh, S., Paneru, P., Shrestha, S. R., Manandhar, S., Beura, K., & Dutta, S. (2019). Trends in key soil parameters under conservation agriculture-based sustainable intensification farming practices in the Eastern Ganga Alluvial Plains. Soil Research, 57(8), 883–893. https://doi.org/10.1071/SR19162. (PMID: 10.1071/SR19162) ; Sinoga, J. D. R., Pariente, S., Diaz, A. R., & Murillo, J. F. M. (2012). Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain). CATENA, 94, 17–25. https://doi.org/10.1016/j.catena.2011.06.004. (PMID: 10.1016/j.catena.2011.06.004) ; Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. https://doi.org/10.1023/A:1016125726789. (PMID: 10.1023/A:1016125726789) ; Somasundaram, J., Salikram, M., Sinha, N. K., Mohanty, M., Chaudhary, R. S., Dalal, R. C., et al. (2019). Conservation agriculture effects on soil properties and crop productivity in a semiarid region of India. Soil Research, 57, 187–199. https://doi.org/10.1071/SR18145. (PMID: 10.1071/SR18145) ; Tadiello, T., Acutis, M., Perego, A., Schillaci, C., & Valkama, E. (2021). Can conservation agriculture enhance soil organic carbon sequestration in Mediterranean and Humid subtropical climates? A meta-analysis, EGU general assembly 2021, Online, 19–30, EGU21-12243, https://doi.org/10.5194/egusphere-egu21-12243 . ; Thierfelder, C., Matemba-Mutasa, R., & Rusinamhodzi, L. (2015). Yield response of maize (Zea mays L.) to conservation agriculture cropping system in Southern Africa. Soil and Tillage Research, 146, 230–242. https://doi.org/10.1016/j.still.2014.10.015. (PMID: 10.1016/j.still.2014.10.015) ; Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264. (PMID: 10.1073/pnas.1116437108) ; Tisdall, J. M., & Oades, J. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33(2), 141–163. (PMID: 10.1111/j.1365-2389.1982.tb01755.x) ; Varvel, G., Riedell, W., Deibert, E., McConkey, B., Tanaka, D., & Vigil, M. (2006). Great Plains cropping system studies for soil quality assessment. Renewable Agriculture and Food Systems, 21(1), 3–14. (PMID: 10.1079/RAF2005121) ; Verhulst, N., Nelissen, V., Jespers, N., Haven, H., Sayre, K. D., Raes, D., et al. (2011). Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant and Soil, 344, 73–85. https://doi.org/10.1007/s11104-011-0728-8. (PMID: 10.1007/s11104-011-0728-8) ; Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03 . (PMID: 10.18637/jss.v036.i03) ; Wang, S., Tang, J., Li, Z., Liu, Y., Zhou, Z., Wang, J., Qu, Y., & Dai, Z. (2020). Carbon mineralization under different saline—alkali stress conditions in paddy fields of Northeast China. Sustainability, 12, 2921. https://doi.org/10.3390/su12072921. (PMID: 10.3390/su12072921)
  • Contributed Indexing: Keywords: Crop yield; India; Meta-analysis; Soil organic carbon; Soil texture; Tillage
  • Substance Nomenclature: 0 (Soil) ; 7440-44-0 (Carbon)
  • Entry Date(s): Date Created: 20240615 Date Completed: 20240615 Latest Revision: 20240621
  • Update Code: 20240622

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -