Zum Hauptinhalt springen

IoT-based monitoring system and air quality prediction using machine learning for a healthy environment in Cameroon.

Folifack Signing, VR ; Mbarndouka Taamté, J ; et al.
In: Environmental monitoring and assessment, Jg. 196 (2024-06-15), Heft 7, S. 621
Online academicJournal

Titel:
IoT-based monitoring system and air quality prediction using machine learning for a healthy environment in Cameroon.
Autor/in / Beteiligte Person: Folifack Signing, VR ; Mbarndouka Taamté, J ; Kountchou Noube, M ; Hamadou Yerima, A ; Azzopardi, J ; Tchuente Siaka, YF ; Saïdou
Link:
Zeitschrift: Environmental monitoring and assessment, Jg. 196 (2024-06-15), Heft 7, S. 621
Veröffentlichung: 1998- : Dordrecht : Springer ; <i>Original Publication</i>: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-, 2024
Medientyp: academicJournal
ISSN: 1573-2959 (electronic)
DOI: 10.1007/s10661-024-12789-7
Schlagwort:
  • Cameroon
  • Volatile Organic Compounds analysis
  • Nitrogen Dioxide analysis
  • Carbon Monoxide analysis
  • Carbon Dioxide analysis
  • Methane analysis
  • Environmental Monitoring methods
  • Machine Learning
  • Air Pollutants analysis
  • Air Pollution statistics & numerical data
  • Particulate Matter analysis
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Monit Assess] 2024 Jun 15; Vol. 196 (7), pp. 621. <i>Date of Electronic Publication: </i>2024 Jun 15.
  • MeSH Terms: Environmental Monitoring* / methods ; Machine Learning* ; Air Pollutants* / analysis ; Air Pollution* / statistics & numerical data ; Particulate Matter* / analysis ; Cameroon ; Volatile Organic Compounds / analysis ; Nitrogen Dioxide / analysis ; Carbon Monoxide / analysis ; Carbon Dioxide / analysis ; Methane / analysis
  • References: Abu Alfeilat, H. A., Hassanat, A. B., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Eyal Salman, H. S., & Prasath, V. S. (2019). Effects of distance measure choice on k-nearest neighbor classifier performance: A review. Big data, 7(4), 221-248. https://www.liebertpub.com/doi/abs/10.1089/big.2018.0175. ; Adak, P., & Kour, N. (2021). A review on the effects of environmental factors on plants tolerance to air pollution. Journal of Environmental Treatment Techniques, 9(4), 839–848. https://www.dormaj.org/index.php/jett/article/view/371. ; Adong, P., Bainomugisha, E., Okure, D., & Sserunjogi, R. (2022). Applying machine learning for large scale field calibration of low‐cost PM2. 5 and PM10 air pollution sensors. Applied AI Letters, 3(3), e76. https://onlinelibrary.wiley.com/doi/full/10.1002/ail2.76. ; Alam, M., Khan, M. D., Khairulalam, M., Syed, A., Rajkumar, R., & Azam, T. B. (2017). Industrial level analysis of air quality and sound limits monitoring in Bangladesh using real time control system. Vibroengineering Procedia, 16, 81–86. https://www.extrica.com/article/19329. ; Alsaedi, A. S., & Liyakathunisa, L. (2019). Spatial and temporal data analysis with deep learning for air quality prediction. In 2019 12th International Conference on Developments in eSystems Engineering (DeSE) (pp. 581–587). IEEE. https://ieeexplore.ieee.org/abstract/document/9073002. ; Ameer, S., Shah, M. A., Khan, A., Song, H., Maple, C., Islam, S. U., & Asghar, M. N. (2019). Comparative analysis of machine learning techniques for predicting air quality in smart cities. IEEE access, 7, 128325–128338. https://ieeexplore.ieee.org/abstract/document/8746201/. ; Ansari, M., & Alam, M. (2024). An intelligent IoT-cloud-based air pollution forecasting model using univariate time-series analysis. Arabian Journal for Science and Engineering, 49(3), 3135-3162. https://link.springer.com/article/10.1007/s13369-023-07876-9. ; Babu Saheer, L., Bhasy, A., Maktabdar, M., & Zarrin, J. (2022). Data-driven framework for understanding and predicting air quality in urban areas. Frontiers in Big Data, 5, 822573. https://www.frontiersin.org/articles/10.3389/fdata.2022.822573/full. ; Banerjee, T., & Srivastava, R. K. (2011). Assessment of the ambient air quality at the Integrated Industrial Estate‐Pantnagar through the air quality index (AQI) and exceedence factor (EF). Asia‐Pacific Journal of Chemical Engineering, 6(1), 64-70. https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.450. ; Bhavanam, B. P. R., & Ragam, P. (2023, December). Assessing the performance of ZigBee RF protocol using path loss models for IoT application. In International e-Conference on Advances in Computer Engineering and Communication Systems (ICACECS 2023) (pp. 348–359). Atlantis Press. https://www.atlantis-press.com/proceedings/icacecs-23/125995740. ; Bisht, A., Kamboj, N., Kamboj, V., & Bisht, A. (2020). A review on the role of emerging anthropogenic activities in environmental degradation and emphasis on their mitigation. Archives of Agriculture and Environmental Science, 5(3), 419–425. https://doi.org/10.26832/24566632.2020.0503025. (PMID: 10.26832/24566632.2020.0503025) ; Breiman, L. (2001). Random forests. Machine learning, 45, 5–32. https://doi.org/10.1023/a:1010933404324. (PMID: 10.1023/a:1010933404324) ; Budi, H. S., Catalan Opulencia, M. J., Afra, A., Abdelbasset, W. K., Abdullaev, D., Majdi, A., Masoume, T., Hafez, A. E., & Mohammadi, M. J. (2024). Source, toxicity and carcinogenic health risk assessment of heavy metals. Reviews on Environmental Health, 39(1), 77–90. https://doi.org/10.1515/reveh-2022-0096. (PMID: 10.1515/reveh-2022-0096) ; Chau, P. N., Zalakeviciute, R., Thomas, I., & Rybarczyk, Y. (2022). Deep learning approach for assessing air quality during COVID-19 lockdown in Quito. Frontiers in Big Data, 5, 842455. https://www.frontiersin.org/articles/10.3389/fdata.2022.842455/full. ; Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., ... & Zhou, T. (2015). Xgboost: Extreme gradient boosting. R Package Version 0.4–2, 1(4), 1–4. https://cran.r-project.org/web/packages/xgboost/vignettes/xgboost . ; Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peer J Computer Science, 7, e623. https://peerj.com/articles/cs-623/. ; Ching, P. M. L., Zou, X., Wu, D., So, R. H. Y., & Chen, G. H. (2022). Development of a wide-range soft sensor for predicting wastewater BOD5 using an eXtreme gradient boosting (XGBoost) machine. Environmental Research, 210, 112953. https://www.sciencedirect.com/science/article/pii/S0013935122002808. ; Coker, E. S., Amegah, A. K., Mwebaze, E., Ssematimba, J., & Bainomugisha, E. (2021). A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda. Environmental Research, 199, 111352. https://www.sciencedirect.com/science/article/pii/S0013935121006460. ; de Oliveira, R. C., Cunha, C. L., Tôrres, A. R., & Corrêa, S. M. (2021). Forecasts of tropospheric ozone in the Metropolitan Area of Rio de Janeiro based on missing data imputation and multivariate calibration techniques. Environmental Monitoring and Assessment, 193, 1-16. https://link.springer.com/article/10.1007/s10661-021-09333-2. ; Dtissibe, F. Y., Ari, A. A. A., Abboubakar, H., Njoya, A. N., Mohamadou, A., & Thiare, O. (2024). A comparative study of machine learning and deep Learning methods for flood forecasting in the Far-North region, Cameroon. Scientific African, 23, e02053. https://www.sciencedirect.com/science/article/pii/S2468227623005069. ; Edmonds, M., Grattan, J., & Michnowicz, S. (2018). Volcanic gases: Silent killers. Observing the Volcano World: Volcano Crisis Communication, 65–83. https://doi.org/10.1007/11157_2015_14. ; Fenger, J. (1999). Urban air quality. Atmospheric Environment, 33(29), 4877–4900. https://www.sciencedirect.com/science/article/abs/pii/S1352231099002903. ; Fiandrino, C., Zhang, C., Patras, P., Banchs, A., & Widmer, J. (2020). A machine-learning-based framework for optimizing the operation of future networks. IEEE Communications Magazine, 58(6), 20–25. https://ieeexplore.ieee.org/abstract/document/9141210. ; Fund, S. (2015). Sustainable development goals. https://www.un.org/sustainabledevelopment/inequality. ; Goh, C. C., Kamarudin, L. M., Zakaria, A., Nishizaki, H., Ramli, N., Mao, X., Zakaria, S. M. M. S., Kanagaraj, E., Sukor, A. S. A., & Elham, M. F. (2021). Real-time in-vehicle air quality monitoring system using machine learning prediction algorithm. Sensors, 21(15), 4956. https://doi.org/10.3390/s21154956. (PMID: 10.3390/s21154956) ; Gupta, N. S., Mohta, Y., Heda, K., Armaan, R., Valarmathi, B., & Arulkumaran, G. (2023). Prediction of air quality index using machine learning techniques: A comparative analysis. Journal of Environmental and Public Health, 2023, 1–26. https://www.hindawi.com/journals/jeph/2023/4916267/. ; Halsana, S. (2020). Air quality prediction model using supervised machine learning algorithms. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 8, 190–201. https://www.academia.edu/download/76904233/CSEIT206435.pdf. ; Harishkumar, K. S., Yogesh, K. M., & Gad, I. (2020). Forecasting air pollution particulate matter (PM2. 5) using machine learning regression models. Procedia Computer Science, 171, 2057–2066. https://www.sciencedirect.com/science/article/pii/S1877050920312060. ; Horton, R. E. (1940). An approach toward a physical interpretation of infiltration capacity. In Soil science Society of America proceedings (Vol. 5, No. 399-417, p. 24). https://doi.org/10.2136/sssaj1941.036159950005000C0075x. ; Hu, J., Ying, Q., Wang, Y., & Zhang, H. (2015). Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices. Environment international, 84, 17–25. https://www.sciencedirect.com/science/article/abs/pii/S0160412015300052. ; Idrees, Z., Zou, Z., & Zheng, L. (2018). Edge computing based IoT architecture for low cost air pollution monitoring systems: A comprehensive system analysis, design considerations & development. Sensors, 18(9), 3021. https://www.mdpi.com/1424-8220/18/9/3021. ; Jacob, M. T., Michaux, K. N., Bertrand, B., Yvette Flore, T. S., Nasser, N., Vitrice Ruben, F. S., ... & Saïdou. (2021). Low-cost air quality monitoring system design and comparative analysis with a conventional method. International Journal of Energy and Environmental Engineering, 12(4), 873-884. https://link.springer.com/article/10.1007/s40095-021-00415-y. ; Jourdain, L., Roberts, T. J., Pirre, M., & Josse, B. (2016). Modeling the reactive halogen plume from Ambrym and its impact on the troposphere with the CCATT-BRAMS mesoscale model. Atmospheric Chemistry and Physics, 16(18), 12099–12125. https://acp.copernicus.org/articles/16/12099/2016/. ; Juarez, E. K., & Petersen, M. R. (2021). A comparison of machine learning methods to forecast tropospheric ozone levels in Delhi. Atmosphere, 13(1), 46. https://www.mdpi.com/2073-4433/13/1/46. ; Kalaivani, G., & Mayilvahanan, P. (2021). Air quality prediction and monitoring using machine learning algorithm based IoT sensor-a researcher's perspective. In 2021 6th International Conference on Communication and Electronics Systems (ICCES) (pp. 1–9). IEEE. https://ieeexplore.ieee.org/abstract/document/9489153. ; Kelly, F. J., Fuller, G. W., Walton, H. A., & Fussell, J. C. (2012). Monitoring air pollution: Use of early warning systems for public health. Respirology, 17(1), 7-19. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-1843.2011.02065.x. ; Kramer, O., & Kramer, O. (2013). K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors, 13–23. https://doi.org/10.1007/978-3-642-38652-7_2. ; Kumari, S., & Jain, M. K. (2018). A critical review on air quality index. Environmental Pollution: Select Proceedings of ICWEES-2016, 87–102. https://doi.org/10.1007/978-981-10-5792-2_8. ; Kumari, N. A., Kumar, K. A., Raju, S. H. V., Vasuki, H. R., & Nikesh, M. P. (2020). Prediction of air quality in industrial area. In 2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT) (pp. 193–198). IEEE. https://ieeexplore.ieee.org/abstract/document/9315660. ; Lei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2019). Macao air quality forecast using statistical methods. Air Quality, Atmosphere & Health, 12, 1049-1057. https://link.springer.com/article/10.1007/s11869-019-00721-9. ; Lei, M. T., Monjardino, J., Mendes, L., Gonçalves, D., & Ferreira, F. (2020). Statistical forecast of pollution episodes in Macao during national holiday and COVID-19. International Journal of Environmental Research and Public Health, 17(14), 5124. https://www.mdpi.com/1660-4601/17/14/5124. ; Lei, T. M., Siu, S. W., Monjardino, J., Mendes, L., & Ferreira, F. (2022). Using machine learning methods to forecast air quality: A case study in Macao. Atmosphere, 13(9), 1412. https://www.mdpi.com/2073-4433/13/9/1412. ; Leong, W. C., Kelani, R. O., & Ahmad, Z. (2020). Prediction of air pollution index (API) using support vector machine (SVM). Journal of Environmental Chemical Engineering, 8(3), 103208. https://www.sciencedirect.com/science/article/abs/pii/S2213343719303318. ; Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., ... & Chan, A. (2020). Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Science of the Total Environment, 732, 139282. https://www.sciencedirect.com/science/article/pii/S0048969720327996. ; Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, 505570. https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2020.00014/full. ; Martín-Baos, J. Á., Rodriguez-Benitez, L., García-Ródenas, R., & Liu, J. (2022). IoT based monitoring of air quality and traffic using regression analysis. Applied Soft Computing, 115, 108282. https://www.sciencedirect.com/science/article/abs/pii/S1568494621010917. ; Martínez, N. M., Montes, L. M., Mura, I., & Franco, J. F. (2018). Machine learning techniques for PM 10 levels forecast in Bogotá. In 2018 ICAI Workshops (ICAIW) (pp. 1–7). IEEE. https://ieeexplore.ieee.org/abstract/document/8554995. ; Mishra, D., & Goyal, P. (2015). Analysis of ambient air quality using fuzzy air quality index: A case study of Delhi, India. International Journal of Environment and Pollution, 58(3), 149-159. https://www.inderscienceonline.com/doi/abs/10.1504/IJEP.2015.077173. ; Molina, M. J., & Molina, L. T. (2004). Megacities and atmospheric pollution. Journal of the Air & Waste Management Association, 54(6), 644-680. https://www.tandfonline.com/doi/abs/10.1080/10473289.2004.10470936. ; Momo, M. N., Beauvais, A., Tematio, P., & Yemefack, M. (2020). Differentiated Neogene bauxitization of volcanic rocks (western Cameroon): Morpho-geological constraints on chemical erosion. Catena, 194, 104685. https://www.sciencedirect.com/science/article/abs/pii/S0341816220302356. ; Morapedi, T. D., & Obagbuwa, I. C. (2023). Air pollution particulate matter (PM2. 5) prediction in South African cities using machine learning techniques. Frontiers in Artificial Intelligence, 6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10595005/. ; Nducol, N., Siaka, Y. F. T., Yakum-Ntaw, S. Y., Saidou, Manga, J. D., & Vardamides, J. C. (2021a). Preliminary study of black carbon content in airborne particulate matters from an open site in the city of Yaoundé, Cameroon. Environmental Monitoring and Assessment, 193, 1-11. https://doi.org/10.1007/s10661-021-08924-3. ; Nducol, N., Tchuente Siaka, Y. F., Younui Yakum-Ntaw, S., Saidou, Dika Manga, J., Vardamides, J. C., ... & Simo, A. (2021b). Ambient air particle mass concentrations in the urban area of the capital city of Yaoundé (Cameroon, Central Africa): Monthly and seasonal behaviour. International Journal of Environmental Analytical Chemistry, 101(15), 2909-2925. https://doi.org/10.1080/03067319.2020.1715378. ; Ni, K., Ramanathan, N., Chehade, M. N. H., Balzano, L., Nair, S., Zahedi, S., Kohler E., Pottie G., Hansen M., Srivastava, M. (2009). Sensor network data fault types. ACM Transactions on Sensor Networks (TOSN), 5(3), 1-29. https://dl.acm.org/doi/abs/10.1145/1525856.1525863. ; Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265–2300. https://www.sciencedirect.com/science/article/abs/pii/S1364032107000834. ; Pradeep, A. K., Appel, A., & Sthanunathan, S. (2018). AI for marketing and product innovation: Powerful new tools for predicting trends, connecting with customers, and closing sales. John Wiley & Sons. https://worldcat.org/title/1027563215. ; Pucher, J., Peng, Z. R., Mittal, N., Zhu, Y., & Korattyswaroopam, N. (2007). Urban transport trends and policies in China and India: Impacts of rapid economic growth. Transport Reviews, 27(4), 379-410. https://www.tandfonline.com/doi/abs/10.1080/01441640601089988. ; Ray, S., & Ray, I. A. (2011). Impact of population growth on environmental degradation: Case of India. Journal of Economics and Sustainable Development, 2(8), 72–77. https://www.iiste.org/. ; Rybarczyk, Y., & Zalakeviciute, R. (2018). Machine learning approaches for outdoor air quality modelling: A systematic review. Applied Sciences, 8(12), 2570. https://www.mdpi.com/2076-3417/8/12/2570. ; Sai, K. B. K., Subbareddy, S. R., & Luhach, A. K. (2019). IOT based air quality monitoring system using MQ135 and MQ7 with machine learning analysis. Scalable Computing: Practice and Experience, 20(4), 599–606. https://www.scpe.org/index.php/scpe/article/view/1561. ; Sensortech, S. (2015). The MiCS-6814 is a compact MOS sensor with three fully independent sensing elements on one package. https://sensorsandpower.angst-pfister.com/. ; Sharma, M., Jain, S., Mittal, S., & Sheikh, T. H. (2021). Forecasting and prediction of air pollutants concentrates using machine learning techniques: The case of India. In IOP Conference Series: Materials Science and Engineering, 1022(1), 012123. IOP Publishing. https://iopscience.iop.org/article/10.1088/1757-899X/1022/1/012123/meta. ; Sigurdsson, H. (1988). Gas bursts from Cameroon crater lakes: A new natural hazard. Disasters, 12(2), 131-146. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7717.1988.tb00661.x. ; Sonawani, S., & Patil, K. (2024). Air quality measurement, prediction and warning using transfer learning based IOT system for ambient assisted living. International Journal of Pervasive Computing and Communications, 20(1), 38-55. https://www.emerald.com/insight/content/doi/10.1108/IJPCC-07-2022-0271/full/html. ; Soni, H. B., & Patel, J. (2017). Assessment of ambient air quality and air quality index in golden corridor of Gujarat, India: A case study of Dahej Port. International Journal of Environment, 6(4), 28–41. (PMID: 10.3126/ije.v6i4.18908) ; Su, Y. (2020). Prediction of air quality based on gradient boosting machine method. In 2020 International Conference on Big Data and Informatization Education (ICBDIE) (pp. 395–397). IEEE. https://ieeexplore.ieee.org/abstract/document/9150155. ; Sun, A. Y., & Scanlon, B. R. (2019). How can Big Data and machine learning benefit environment and water management: a survey of methods, applications, and future directions. Environmental Research Letters, 14(7), 073001. https://iopscience.iop.org/article/10.1088/1748-9326/ab1b7d/meta. ; Usmani, M. (2022). Development of remote sensing-based predictive analytics to understand complex environmental problems for ensuring sustainability of human well-being (Doctoral dissertation, University of Florida). https://original-ufdc.uflib.ufl.edu/UFE0058470/00001. ; Venkatraman Jagatha, J., Klausnitzer, A., Chacón-Mateos, M., Laquai, B., Nieuwkoop, E., van der Mark, P., & Schneider, C. (2021). Calibration method for particulate matter low-cost sensors used in ambient air quality monitoring and research. Sensors, 21(12), 3960. https://www.mdpi.com/1424-8220/21/12/3960. ; World Health Organization. (2010). WHO guidelines for indoor air quality: Selected pollutants. World Health Organization. Regional Office for Europe. https://iris.who.int/bitstream/handle/10665/260127/9789289002134-eng.pdf. ; Yaulande, D. A., André, D., Ossénatou, M., & André, L. (2022). Prediction of daily direct solar energy based on xgboost in Cameroon and key parameter impacts analysis. In 2022 IEEE Multi-conference on Natural and Engineering Sciences for Sahel's Sustainable Development (MNE3SD) (pp. 1–7). IEEE. https://ieeexplore.ieee.org/abstract/document/9723309. ; Yu, R., Yang, Y., Yang, L., Han, G., & Move, O. A. (2016). RAQ–A random forest approach for predicting air quality in urban sensing systems. Sensors, 16(1), 86. https://www.mdpi.com/1424-8220/16/1/86. ; Yuh, Y. G., Tracz, W., Matthews, H. D., & Turner, S. E. (2023). Application of machine learning approaches for land cover monitoring in northern Cameroon. Ecological informatics, 74, 101955. https://www.sciencedirect.com/science/article/pii/S1574954122004058. ; Zhang, D., Du, L., Wang, W., Zhu, Q., Bi, J., Scovronick, N., ... & Liu, Y. (2021). A machine learning model to estimate ambient PM2. 5 concentrations in industrialized highveld region of South Africa. Remote sensing of environment, 266, 112713. https://www.sciencedirect.com/science/article/abs/pii/S0034425721004338. ; Zhu, S., Lian, X., Liu, H., Hu, J., Wang, Y., & Che, J. (2017). Daily air quality index forecasting with hybrid models: A case in China. Environmental Pollution, 231, 1232–1244. https://www.sciencedirect.com/science/article/abs/pii/S0269749117316330.
  • Contributed Indexing: Keywords: Air pollution; Air quality index (AQI); Data analysis; Internet of Things (IoT); Machine learning (ML)
  • Substance Nomenclature: 0 (Air Pollutants) ; 0 (Particulate Matter) ; 0 (Volatile Organic Compounds) ; S7G510RUBH (Nitrogen Dioxide) ; 7U1EE4V452 (Carbon Monoxide) ; 142M471B3J (Carbon Dioxide) ; OP0UW79H66 (Methane)
  • Entry Date(s): Date Created: 20240615 Date Completed: 20240615 Latest Revision: 20240615
  • Update Code: 20240616

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -