Zum Hauptinhalt springen

Synergizing remote sensing and ecological indicators (RSEIs) for evaluating ecological environmental quality (EEQ) in Asansol Municipal Corporation: an integrated approach.

Sarkar, S ; Manna, H ; et al.
In: Environmental monitoring and assessment, Jg. 196 (2024-06-19), Heft 7, S. 631
Online academicJournal

Titel:
Synergizing remote sensing and ecological indicators (RSEIs) for evaluating ecological environmental quality (EEQ) in Asansol Municipal Corporation: an integrated approach.
Autor/in / Beteiligte Person: Sarkar, S ; Manna, H ; Roy, SK ; Dolui, M ; Hossain, M
Link:
Zeitschrift: Environmental monitoring and assessment, Jg. 196 (2024-06-19), Heft 7, S. 631
Veröffentlichung: 1998- : Dordrecht : Springer ; <i>Original Publication</i>: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-, 2024
Medientyp: academicJournal
ISSN: 1573-2959 (electronic)
DOI: 10.1007/s10661-024-12793-x
Schlagwort:
  • Ecology
  • Principal Component Analysis
  • Conservation of Natural Resources methods
  • Ecosystem
  • Cities
  • Environmental Monitoring methods
  • Remote Sensing Technology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Monit Assess] 2024 Jun 19; Vol. 196 (7), pp. 631. <i>Date of Electronic Publication: </i>2024 Jun 19.
  • MeSH Terms: Environmental Monitoring* / methods ; Remote Sensing Technology* ; Ecology ; Principal Component Analysis ; Conservation of Natural Resources / methods ; Ecosystem ; Cities
  • References: Abulibdeh, A. (2021). Analysis of urban heat island characteristics and mitigation strategies for eight arid and semi-arid gulf region cities. Environmental Earth Sciences, 80(7), 1–26. https://doi.org/10.1007/S12665-021-09540-7/TABLES/8. (PMID: 10.1007/S12665-021-09540-7/TABLES/8) ; Adams, M., & P. S. (2014). A systematic approach to model the influence of the type and density of vegetation cover on urban heat using remote sensing. Landsc Urban Plan, 132, 47–54. (PMID: 10.1016/j.landurbplan.2014.08.008) ; Al Faisal, A., Kafy, A. A., Al Rakib, A., Akter, K. S., Jahir, D. M. A., Sikdar, M. S., Ashrafi, T. J., Mallik, S., & Rahman, M. M. (2021). Assessing and predicting land use/land cover, land surface temperature, and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environmental Challenges, 4, 100192. https://doi.org/10.1016/J.ENVC.2021.100192. (PMID: 10.1016/J.ENVC.2021.100192) ; Boori, M. S., Choudhary, K., Paringer, R., & Kupriyanov, A. (2021). Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sensing Applications: Society and Environment, 23, 100530. https://doi.org/10.1016/J.RSASE.2021.100530. (PMID: 10.1016/J.RSASE.2021.100530) ; Burton, A. (2010). The return of the quagga. Frontiers in Ecology and the Environment, 8(8), 448. https://doi.org/10.1002/(ISSN)1540-9309. (PMID: 10.1002/(ISSN)1540-9309) ; Campos, J. A., da Silva, D. D., Fernandes Filho, E. I., Pires, G. F., Amorim, R. S. S., de Menezes Filho, F. C. M., de Melo Ribeiro, C. B., Uliana, E. M., & Aires, U. R. V. (2023). Environmental vulnerability assessment of the Doce River basin, southeastern Brazil. Environmental Monitoring and Assessment, 195(9), 1–21. https://doi.org/10.1007/S10661-023-11782-W/FIGURES/6. (PMID: 10.1007/S10661-023-11782-W/FIGURES/6) ; Census of India. (2011). Government of India. In Meta Data. Office of the Registrar General and Census Commissioner https://: censusindia.nic.in. ; Chatterjee, P. R., & Raziuddin, M. (2007). Studies on the water quality of a water body at Asansol Town, West Bengal. Nature, Environment and Pollution Technology, 6(2), 289–292. ; Chatterjee, S., Dutta, S., Dutta, I., & Das, A. (2022). Ecosystem services change in response to land use land cover dynamics in Paschim Bardhaman District of West Bengal, India. Remote Sensing Applications: Society and Environment, 27, 100793. https://doi.org/10.1016/J.RSASE.2022.100793. (PMID: 10.1016/J.RSASE.2022.100793) ; Chatterjee, S., & Gupta, K. (2021). Exploring the spatial pattern of urban heat island formation in relation to land transformation: A study on a mining industrial region of West Bengal, India. Remote Sensing Applications: Society and Environment, 23, 100581. https://doi.org/10.1016/J.RSASE.2021.100581. (PMID: 10.1016/J.RSASE.2021.100581) ; Chatterjee, U. (2017). Environmental pollution in Durgapur-Asansol industrial complex: Issues and concerns. International Journal of Academic Research and Development, 2, 378–381 www.academicsjournal.com. ; Chen, W., Yang, L., Chi, G., & Zeng, J. (2024). Ecosystem degradation or restoration? The evolving role of land use in China, 2000–2020. Environmental Monitoring and Assessment, 196(3), 1–17. https://doi.org/10.1007/S10661-024-12464-X/FIGURES/6. (PMID: 10.1007/S10661-024-12464-X/FIGURES/6) ; Choudhury, D., Das, K., & Das, A. (2018). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203–218. https://doi.org/10.1016/j.ejrs.2018.05.004. (PMID: 10.1016/j.ejrs.2018.05.004) ; Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. Egyptian Journal of Remote Sensing and Space Science, 22(2), 203–218. https://doi.org/10.1016/J.EJRS.2018.05.004. (PMID: 10.1016/J.EJRS.2018.05.004) ; Dale, V. H., & Polasky, S. (2007). Measures of the effects of agricultural practices on ecosystem services. Ecological Economics, 64(2), 286–296. https://doi.org/10.1016/J.ECOLECON.2007.05.009. (PMID: 10.1016/J.ECOLECON.2007.05.009) ; Dang, Y., He, H., Zhao, D., Sunde, M., & Du, H. (2020). Quantifying the relative importance of climate change and human activities on selected wetland ecosystems in China. Sustainability, 12(3), 912. https://doi.org/10.3390/SU12030912. (PMID: 10.3390/SU12030912) ; de Sousa, C. A. F., da Silveira, J. A. R., Santos, C. A. G., & da Silva, R. M. (2023). A methodological proposal to analyze urban sprawl, negative environmental impacts, and land degradation in the case of João Pessoa City (Brazil) between 1991 and 2018. Environmental Monitoring and Assessment, 195(6), 1–24. https://doi.org/10.1007/S10661-023-11325-3/FIGURES/9. (PMID: 10.1007/S10661-023-11325-3/FIGURES/9) ; Deng, Y., Qi, W., Fu, B., & Wang, K. (2020). Geographical transformations of urban sprawl: Exploring the spatial heterogeneity across cities in China 1992–2015. Cities, 105, 102415. https://doi.org/10.1016/J.CITIES.2019.102415. (PMID: 10.1016/J.CITIES.2019.102415) ; El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2020). A multiple linear regression-based approach to predict student performance. Advances in Intelligent Systems and Computing, 1102 AISC, 9–23. https://doi.org/10.1007/978-3-030-36653-7_2. ; Fang, G., Pablo, R. D. A., & Zhang, Y. (2023). Eco-environmental quality assessment using the remote sensing ecological index in Suzhou City, China. Sustainability, 15(17), 13158. https://doi.org/10.3390/SU151713158. (PMID: 10.3390/SU151713158) ; García Sánchez, F., & Govindarajulu, D. (2023). Integrating blue-green infrastructure in urban planning for climate adaptation: Lessons from Chennai and Kochi, India. Land Use Policy, 124, 106455. https://doi.org/10.1016/J.LANDUSEPOL.2022.106455. (PMID: 10.1016/J.LANDUSEPOL.2022.106455) ; Ghose, M. K., Dikshit, A. K., & Sharma, S. K. (2006). A GIS based transportation model for solid waste disposal – A case study on Asansol municipality. Waste Management, 26(11), 1287–1293. https://doi.org/10.1016/J.WASMAN.2005.09.022. (PMID: 10.1016/J.WASMAN.2005.09.022) ; Ghosh, R. (2020). Impacts on air quality index in the industrial town of Asansol (West Bengal, India) due to COVID-19 lockdown. https://doi.org/10.21203/RS.3.RS-91826/V1. (PMID: 10.21203/RS.3.RS-91826/V1) ; Grumbine, R. E. (2007). China’s emergence and the prospects for global sustainability. BioScience, 57(3), 249–255. https://doi.org/10.1641/B570308. (PMID: 10.1641/B570308) ; Guchhait, S., Patra, T., Das, N., & Das, S. (2022). Mapping of urban heat islands and mitigation measures in the Durgapur-Asansol Industrial Region, India. Advances in Urbanism, Smart Cities, and Sustainability, 93–109. https://doi.org/10.1201/9781003126195-7. ; Haldar, S., Mandal, S., Bhattacharya, S., & Paul, S. (2023). Dynamicity of land use/land cover (LULC): An analysis from peri-urban and rural neighbourhoods of Durgapur Municipal Corporation (DMC) in India. Regional Sustainability, 4(2), 150–172. https://doi.org/10.1016/J.REGSUS.2023.05.001. (PMID: 10.1016/J.REGSUS.2023.05.001) ; Halder, B., Bandyopadhyay, J., Khedher, K. M., Fai, C. M., Tangang, F., & Yaseen, Z. M. (2022). Delineation of urban expansion influences urban heat islands and the natural environment using remote sensing and GIS-based in industrial area. Environmental Science and Pollution Research, 29(48), 73147–73170. https://doi.org/10.1007/S11356-022-20821-X/FIGURES/7. (PMID: 10.1007/S11356-022-20821-X/FIGURES/7) ; Han, H., Yang, C., & Song, J. (2015). Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability, 7(4), 4260–4279. https://doi.org/10.3390/SU7044260. (PMID: 10.3390/SU7044260) ; Hasan, S., Shi, W., Zhu, X., & Abbas, S. (2019). Monitoring of land use/land cover and socioeconomic changes in South China over the last three decades using Landsat and nighttime light data. Remote Sensing, 11(14), 1658. https://doi.org/10.3390/RS11141658. (PMID: 10.3390/RS11141658) ; Hassan, M. M. (2017). Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sensing Applications: Society and Environment, 7, 69–83. https://doi.org/10.1016/J.RSASE.2017.07.001. (PMID: 10.1016/J.RSASE.2017.07.001) ; He, C., Gao, B., Huang, Q., Ma, Q., & Dou, Y. (2017). Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sensing of Environment, 193, 65–75. https://doi.org/10.1016/J.RSE.2017.02.027. (PMID: 10.1016/J.RSE.2017.02.027) ; Jafarbiglu, H., & Pourreza, A. (2022). A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. Computers and Electronics in Agriculture, 197, 106844. https://doi.org/10.1016/J.COMPAG.2022.106844. (PMID: 10.1016/J.COMPAG.2022.106844) ; Jian, B. (2012). A review of statistical methods for determination of relative importance of correlated predictors and identification of drivers of consumer liking. Journal of Sensory Studies, 27(2), 87–101. (PMID: 10.1111/j.1745-459X.2012.00370.x) ; Jiang, Y., Jia, D., Li, K., Sun, J., Huang, J., Wang, Q., Guo, H., Zhang, B., Bai, Y., & He, X. (2017). IOP conference series: Earth and environmental science ecological environment assessment based on remote sensing in Zhengzhou A method of delineating ecological red lines based on gray relational analysis and the minimum cumulative resistance model: A case study of Shawan District, China ecological environment assessment based on remote sensing in Zhengzhou. IOP Conf. Series: Earth and Environmental Science, 94, 12190. https://doi.org/10.1088/1755-1315/94/1/012190. (PMID: 10.1088/1755-1315/94/1/012190) ; Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments (p. 374(2065)). Mathematical, Physical and Engineering Sciences. https://doi.org/10.1098/RSTA.2015.0202. (PMID: 10.1098/RSTA.2015.0202) ; Karbalaei Saleh, S., Amoushahi, S., & Gholipour, M. (2021). Spatiotemporal ecological quality assessment of metropolitan cities: A case study of central Iran. Environmental Monitoring and Assessment, 193(5), 1–20. https://doi.org/10.1007/S10661-021-09082-2/FIGURES/8. (PMID: 10.1007/S10661-021-09082-2/FIGURES/8) ; Kasniza Jumari, N. A. S., Ahmed, A. N., Huang, Y. F., Ng, J. L., Koo, C. H., Chong, K. L., Sherif, M., & Elshafie, A. (2023). Analysis of urban heat islands with Landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon, 9(8), e18424. https://doi.org/10.1016/J.HELIYON.2023.E18424. (PMID: 10.1016/J.HELIYON.2023.E18424) ; Liu, H., Jiang, Y., Misa, R., Gao, J., Xia, M., Preusse, A., Sroka, A., & Jiang, Y. (2021). Ecological environment changes of mining areas around Nansi Lake with remote sensing monitoring. Environmental Science and Pollution Research International, 28(32), 44152–44164. https://doi.org/10.1007/S11356-021-13849-Y. (PMID: 10.1007/S11356-021-13849-Y) ; Liu, Q., Yu, F., & Mu, X. (2022). Evaluation of the ecological environment quality of the Kuye River source basin using the remote sensing ecological index. International Journal of Environmental Research and Public Health 2022, Vol. 19, Page 12500, 19(19), 12500. https://doi.org/10.3390/IJERPH191912500. ; Liu, Y., Li, J., & Yang, Y. (2018). Strategic adjustment of land use policy under the economic transformation. Land Use Policy, 74, 5–14. https://doi.org/10.1016/J.LANDUSEPOL.2017.07.005. (PMID: 10.1016/J.LANDUSEPOL.2017.07.005) ; Lyons, M. B., Phinn, S. R., & Roelfsema, C. M. (2012). Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 34–46. https://doi.org/10.1016/J.ISPRSJPRS.2012.05.002. (PMID: 10.1016/J.ISPRSJPRS.2012.05.002) ; Maity, B., Mallick, S. K., Das, P., & Rudra, S. (2022). Comparative analysis of groundwater potentiality zone using fuzzy AHP, frequency ratio and Bayesian weights of evidence methods. Applied Water Science, 12(4), 1–16. https://doi.org/10.1007/S13201-022-01591-W/FIGURES/7. (PMID: 10.1007/S13201-022-01591-W/FIGURES/7) ; Maity, B., Mallick, S. K., & Rudra, S. (2022). Spatiotemporal dynamics of urban landscape in Asansol municipal corporation, West Bengal, India: A geospatial analysis. GeoJournal, 87(3), 1619–1637. https://doi.org/10.1007/S10708-020-10315-Z/TABLES/10. (PMID: 10.1007/S10708-020-10315-Z/TABLES/10) ; Maity, S., Das, S., Pattanayak, J. M., Bera, B., & Shit, P. K. (2022). Assessment of ecological environment quality in Kolkata urban agglomeration, India. Urban Ecosystems, 25(4), 1137–1154. https://doi.org/10.1007/S11252-022-01220-Z/FIGURES/10. (PMID: 10.1007/S11252-022-01220-Z/FIGURES/10) ; Mell, I. C. (2018). Greening Ahmedabad—Creating a resilient Indian city using a green infrastructure approach to investment. Landscape Research, 43(3), 289–314. https://doi.org/10.1080/01426397.2017.1314452. (PMID: 10.1080/01426397.2017.1314452) ; Mukherjee, F., & Singh, D. (2020). Assessing land use–land cover change and its impact on land surface temperature using LANDSAT data: A comparison of two urban areas in India. Earth Systems and Environment, 4(2), 385–407. https://doi.org/10.1007/S41748-020-00155-9/METRICS. (PMID: 10.1007/S41748-020-00155-9/METRICS) ; Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino, C., Adamo, M., & Mairota, P. (2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45–59. https://doi.org/10.1016/J.ECOLIND.2012.09.014. (PMID: 10.1016/J.ECOLIND.2012.09.014) ; Nagendra, H., Nagendran, S., Paul, S., & Pareeth, S. (2012). Graying, greening and fragmentation in the rapidly expanding Indian city of Bangalore. Landscape and Urban Planning, 105(4), 400–406. https://doi.org/10.1016/J.LANDURBPLAN.2012.01.014. (PMID: 10.1016/J.LANDURBPLAN.2012.01.014) ; Nair, A. S., & Indu, J. (2019). Improvement of land surface model simulations over India via data assimilation of satellite-based soil moisture products. Journal of Hydrology, 573, 406–421. https://doi.org/10.1016/J.JHYDROL.2019.03.088. (PMID: 10.1016/J.JHYDROL.2019.03.088) ; Normalized difference vegetation index - An overview | ScienceDirect Topics. (n.d.). Retrieved October 4, 2023, from https://www.sciencedirect.com/topics/earth-and-planetary-sciences/normalized-difference-vegetation-index. ; Oxford Academic Integrated approaches to long-term studies of urban ecological systems | BioScience | Oxford Academic. (n.d.). Retrieved July 13, 2023, from https://academic.oup.com/bioscience/article/50/7/571/354328. ; Pan, Y., Gong, J., & Li, J. (2022). Assessment of remote sensing ecological quality by introducing water and air quality indicators: A case study of Wuhan, China. Land, 11(12), 2272. https://doi.org/10.3390/LAND11122272. (PMID: 10.3390/LAND11122272) ; Park, S., Im, J., Park, S., & Rhee, J. (2017). Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agricultural and Forest Meteorology, 237–238, 257–269. https://doi.org/10.1016/J.AGRFORMET.2017.02.022. (PMID: 10.1016/J.AGRFORMET.2017.02.022) ; Pasimeni, M. R., Valente, D., Semeraro, T., Petrosillo, I., & Zurlini, G. (2019). Anthropogenic landscapes. Encyclopedia of ecology: Volume 1-4. Second Edition, 4, 472–481. https://doi.org/10.1016/B978-0-12-409548-9.10602-5. (PMID: 10.1016/B978-0-12-409548-9.10602-5) ; Paul, A., Ghosh, D., Bardhan, S., & Chatterjee, K. (2021). Analysis of urban green space using geospatial techniques: Case study in Asansol Municipal Corporation area. SSRG International Journal of Humanities and Social Science, 8, 61–69. https://doi.org/10.14445/23942703/IJHSS-V8I4P110. (PMID: 10.14445/23942703/IJHSS-V8I4P110) ; Pramanik, S., Areendran, G., Punia, M., & Sahoo, S. (2022). Spatio-temporal pattern of urban eco-environmental quality of Indian megacities using geo-spatial techniques. Geocarto International, 37(17), 5067–5090. https://doi.org/10.1080/10106049.2021.1903578. (PMID: 10.1080/10106049.2021.1903578) ; Rahaman, S., Kumar, P., Chen, R., Meadows, M. E., & Singh, R. B. (2020). Remote sensing assessment of the impact of land use and land cover change on the environment of Barddhaman District, West Bengal. India. Frontiers in Environmental Science, 8. https://doi.org/10.3389/FENVS.2020.00127. ; Rahman, A., Kumar, Y., Fazal, S., & Bhaskaran, S. (2011). Urbanization and quality of urban environment using remote sensing and GIS techniques in East Delhi-India. Journal of Geographic Information System, 03(01), 62–84. https://doi.org/10.4236/JGIS.2011.31005. (PMID: 10.4236/JGIS.2011.31005) ; Ram, A., Tiwari, S. K., Pandey, H. K., Chaurasia, A. K., Singh, S., & Singh, Y. V. (2021). Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11(2), 1–20. https://doi.org/10.1007/S13201-021-01376-7/FIGURES/4. (PMID: 10.1007/S13201-021-01376-7/FIGURES/4) ; Rasul, A., Balzter, H., Ibrahim, G. R. F., Hameed, H. M., Wheeler, J., Adamu, B., Ibrahim, S., & Najmaddin, P. M. (2018). Applying built-up and bare-soil indices from Landsat 8 to cities in dry climates. Land, 7(3), 81. https://doi.org/10.3390/LAND7030081. (PMID: 10.3390/LAND7030081) ; Ren, Q., He, C., Huang, Q., Zhang, D., Shi, P., & Lu, W. (2023). Impacts of global urban expansion on natural habitats undermine the 2050 vision for biodiversity. Resources, Conservation and Recycling, 190. https://doi.org/10.1016/j.resconrec.2022.106834. ; Ren, W., Zhang, X., & Peng, H. (2022). Evaluation of temporal and spatial changes in ecological environmental quality on Jianghan Plain From 1990 to 2021. Frontiers in Environmental Science, 10, 884440. https://doi.org/10.3389/FENVS.2022.884440/BIBTEX. (PMID: 10.3389/FENVS.2022.884440/BIBTEX) ; Roy, S., Bose, A., Majumder, S., Roy Chowdhury, I., Abdo, H. G., Almohamad, H., & Abdullah Al Dughairi, A. (2022). Evaluating urban environment quality (UEQ) for class-I Indian city: An integrated RS-GIS based exploratory spatial analysis. Geocarto International. https://doi.org/10.1080/10106049.2022.2153932. ; Roy, S., Bose, A., Singha, N., Basak, D., & Chowdhury, I. R. (2021). Urban waterlogging risk as an undervalued environmental challenge: An integrated MCDA-GIS based modeling approach. Environmental Challenges, 4, 100194. https://doi.org/10.1016/J.ENVC.2021.100194. (PMID: 10.1016/J.ENVC.2021.100194) ; Rozenstein, O., Qin, Z., Derimian, Y., & Karnieli, A. (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors, 14(4), 5768–5780. https://doi.org/10.3390/S140405768. (PMID: 10.3390/S140405768) ; Schuster, C., Förster, M., & Kleinschmit, B. (2012). Testing the red edge channel for improving land-use classifications based on high-resolution multispectral satellite data. International Journal of Remote Sensing, 33(17), 5583–5599. https://doi.org/10.1080/01431161.2012.666812. (PMID: 10.1080/01431161.2012.666812) ; Sekertekin, A. (2019). Validation of physical radiative transfer equation-based land surface temperature using Landsat 8 satellite imagery and SURFRAD in-situ measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 196, 105161. https://doi.org/10.1016/J.JASTP.2019.105161. (PMID: 10.1016/J.JASTP.2019.105161) ; Sekertekin, A., & Bonafoni, S. (2020). Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2), 294. https://doi.org/10.3390/RS12020294. (PMID: 10.3390/RS12020294) ; Siddique, G., Roy, A., Mandal, M. H., Ghosh, S., Basak, A., Singh, M., & Mukherjee, N. (2022). An assessment on the changing status of urban green space in Asansol City, West Bengal. GeoJournal, 87(2), 1299–1321. https://doi.org/10.1007/S10708-020-10312-2/TABLES/1. (PMID: 10.1007/S10708-020-10312-2/TABLES/1) ; Sinha, S., & Basu, A. (2023). Assessing urban land-use sustainability: Asansol Durgapur Planning Area, West Bengal, India. In Water, land, and forest susceptibility and sustainability: Insight towards management, conservation and ecosystem services: Volume 2: Science of sustainable systems (pp. 287–329). Academic Press. https://doi.org/10.1016/B978-0-443-15847-6.00002-1. (PMID: 10.1016/B978-0-443-15847-6.00002-1) ; Smith, P., Ashmore, M. R., Black, H. I. J., Burgess, P. J., Evans, C. D., Quine, T. A., Thomson, A. M., Hicks, K., & Orr, H. G. (2013). REVIEW: The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 50(4), 812–829. https://doi.org/10.1111/1365-2664.12016. (PMID: 10.1111/1365-2664.12016) ; Sowińska-Świerkosz, B. (2017). Application of surrogate measures of ecological quality assessment: The introduction of the Indicator of Ecological Landscape Quality (IEIQ). Ecological Indicators, 73, 224–234. https://doi.org/10.1016/j.ecolind.2016.09.019. (PMID: 10.1016/j.ecolind.2016.09.019) ; Sruthi Krishnan, V., & Mohammed Firoz, C. (2020). Regional urban environmental quality assessment and spatial analysis. Journal of Urban Management, 9(2), 191–204. https://doi.org/10.1016/J.JUM.2020.03.001. (PMID: 10.1016/J.JUM.2020.03.001) ; Sudhira, H. S., & Nagendra, H. (2013). Local assessment of Bangalore: Graying and greening in Bangalore – Impacts of urbanization on ecosystems, ecosystem services and biodiversity. Urbanization, biodiversity and ecosystem services: Challenges and opportunities: A global assessment, 75–91. https://doi.org/10.1007/978-94-007-7088-1_7/FIGURES/3. ; Sun, C., Li, J., Liu, Y., Cao, L., Zheng, J., Yang, Z., Ye, J., & Li, Y. (2022). Ecological quality assessment and monitoring using a time-series remote sensing-based ecological index (ts-RSEI). GIScience and Remote Sensing, 59(1), 1793–1816. https://doi.org/10.1080/15481603.2022.2138010/SUPPL_FILE/TGRS_A_2138010_SM6021.DOCX. (PMID: 10.1080/15481603.2022.2138010/SUPPL_FILE/TGRS_A_2138010_SM6021.DOCX) ; Tan, M., Li, X., Xie, H., & Lu, C. (2005). Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy, 22(3), 187–196. https://doi.org/10.1016/J.LANDUSEPOL.2004.03.003. (PMID: 10.1016/J.LANDUSEPOL.2004.03.003) ; Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. (2011). Remote sensing land surface temperature for meteorology and climatology: A review. Meteorological Applications, 18(3), 296–306. https://doi.org/10.1002/MET.287. (PMID: 10.1002/MET.287) ; Ullah, S., Tahir, A. A., Akbar, T. A., Hassan, Q. K., Dewan, A., Khan, A. J., & Khan, M. (2019). Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region. Sustainability, 11(19), 5492. https://doi.org/10.3390/su11195492. (PMID: 10.3390/su11195492) ; Viana, C. M., Oliveira, S., Oliveira, S. C., & Rocha, J. (2019). Land use/land cover change detection and urban sprawl analysis. Spatial Modeling in GIS and R for Earth and Environmental Sciences, 621–651. https://doi.org/10.1016/B978-0-12-815226-3.00029-6. ; Vinayak, B., Lee, H. S., Gedam, S., & Latha, R. (2022). Impacts of future urbanization on urban microclimate and thermal comfort over the Mumbai metropolitan region, India. Sustainable Cities and Society, 79, 103703. https://doi.org/10.1016/J.SCS.2022.103703. (PMID: 10.1016/J.SCS.2022.103703) ; Wu, J. (2008). Landscape ecology. In Encyclopedia of ecology (pp. 2103–2108). Elsevier BV. https://doi.org/10.1016/B978-008045405-4.00864-8. (PMID: 10.1016/B978-008045405-4.00864-8) ; Wu, X., & Zhang, H. (2021). Evaluation of ecological environmental quality and factor explanatory power analysis in western Chongqing, China. Ecological Indicators, 132, 108311. https://doi.org/10.1016/J.ECOLIND.2021.108311. (PMID: 10.1016/J.ECOLIND.2021.108311) ; Xu, H., Wang, Y., Guan, H., Shi, T., & Hu, X. (2019). Remote sensing detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sensing, 11(20), 2345. https://doi.org/10.3390/rs11202345. (PMID: 10.3390/rs11202345) ; Ye, X., & Kuang, H. (2022). Evaluation of ecological quality in southeast Chongqing based on modified remote sensing ecological index. Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-19851-9. (PMID: 10.1038/s41598-022-19851-9) ; Zhang, J., Zhang, Q., Bao, A., & Wang, Y. (2019). A new remote sensing dryness index based on the near-infrared and red spectral space. Remote Sensing, 11(4), 456. https://doi.org/10.3390/RS11040456. (PMID: 10.3390/RS11040456) ; Zhang, K., Feng, R., Zhang, Z., Deng, C., Zhang, H., Liu, K., Zhang, K., Feng, R., Zhang, Z., Deng, C., Zhang, H., & Liu, K. (2022). Exploring the driving factors of remote sensing ecological index changes from the perspective of geospatial differentiation: A case study of the Weihe River basin, China. International Journal of Environmental Research and Public Health, 19(17), 10930. https://doi.org/10.3390/IJERPH191710930. (PMID: 10.3390/IJERPH191710930) ; Zhang, M., Kafy, A., Ren, B., Zhang, Y., Tan, S., & Li, J. (2022). Application of the optimal parameter geographic detector model in the identification of influencing factors of ecological quality in Guangzhou, China. Land, 11(8), 1303. https://doi.org/10.3390/LAND11081303. (PMID: 10.3390/LAND11081303) ; Zhang, M., Tan, S., Zhang, Y., He, J., & Ni, Q. (2022). Does land transfer promote the development of new-type urbanization? New evidence from urban agglomerations in the middle reaches of the Yangtze River. Ecological Indicators, 136, 108705. https://doi.org/10.1016/J.ECOLIND.2022.108705. (PMID: 10.1016/J.ECOLIND.2022.108705) ; Zhang, Y., Yi, L., Xie, B., Li, J., Xiao, J., Xie, J., & Liu, Z. (2023). Analysis of ecological quality changes and influencing factors in Xiangjiang River basin. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-31453-7. (PMID: 10.1038/s41598-023-31453-7) ; Zhao, T., Gao, Y., Zhan, W., Sun, H., Zhang, T., Li, L., Zuo, W., Tang, X., Li, Y., & Tian, Y. (2024). Municipal solid waste (MSW) under the population shrinking and aging: Spatio-temporal patterns, driving forces, and the impact of smart city development. Journal of Cleaner Production, 434, 140124. https://doi.org/10.1016/J.JCLEPRO.2023.140124. (PMID: 10.1016/J.JCLEPRO.2023.140124) ; Zhong, X., Zhao, L., Wang, J., Zheng, H., Yan, J., Jin, R., & Ren, P. (2021). Empirical models on urban surface emissivity retrieval based on different spectral response functions: A field study. Building and Environment, 197, 107882. https://doi.org/10.1016/J.BUILDENV.2021.107882. (PMID: 10.1016/J.BUILDENV.2021.107882) ; Zhou, G., Wang, H., Chen, W., Zhang, G., Luo, Q., & Jia, B. (2019). Impacts of urban land surface temperature on tract landscape pattern, physical and social variables. International Journal of Remote Sensing, 41(2), 683–703. https://doi.org/10.1080/01431161.2019.1646939. (PMID: 10.1080/01431161.2019.1646939)
  • Contributed Indexing: Keywords: Asansol Municipality; Ecological environmental quality; Principal component analysis; Receiving operating characteristics; Remote sensing–based ecological indicators
  • Entry Date(s): Date Created: 20240619 Date Completed: 20240619 Latest Revision: 20240619
  • Update Code: 20240619

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -