Zum Hauptinhalt springen

In vitro modulation the Notch pathway by piperine: A therapeutic strategy for docetaxel-resistant and non-resistant prostate cancer.

Wang, RT ; Liu, HE ; et al.
In: Chemical biology & drug design, Jg. 103 (2024-06-01), Heft 6, S. e14562
Online academicJournal

Titel:
In vitro modulation the Notch pathway by piperine: A therapeutic strategy for docetaxel-resistant and non-resistant prostate cancer.
Autor/in / Beteiligte Person: Wang, RT ; Liu, HE ; Sun, HY
Link:
Zeitschrift: Chemical biology & drug design, Jg. 103 (2024-06-01), Heft 6, S. e14562
Veröffentlichung: Oxford : Wiley-Blackwell, 2006-, 2024
Medientyp: academicJournal
ISSN: 1747-0285 (electronic)
DOI: 10.1111/cbdd.14562
Schlagwort:
  • Humans
  • Male
  • Cell Line, Tumor
  • Receptors, Notch metabolism
  • Antineoplastic Agents pharmacology
  • Antineoplastic Agents chemistry
  • Cell Survival drug effects
  • Receptor, Notch1 metabolism
  • Polyunsaturated Alkamides pharmacology
  • Polyunsaturated Alkamides chemistry
  • Benzodioxoles pharmacology
  • Benzodioxoles chemistry
  • Alkaloids pharmacology
  • Alkaloids chemistry
  • Piperidines pharmacology
  • Piperidines chemistry
  • Docetaxel pharmacology
  • Signal Transduction drug effects
  • Drug Resistance, Neoplasm drug effects
  • Prostatic Neoplasms drug therapy
  • Prostatic Neoplasms metabolism
  • Prostatic Neoplasms pathology
  • Apoptosis drug effects
  • Cell Movement drug effects
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Chem Biol Drug Des] 2024 Jun; Vol. 103 (6), pp. e14562.
  • MeSH Terms: Polyunsaturated Alkamides* / pharmacology ; Polyunsaturated Alkamides* / chemistry ; Benzodioxoles* / pharmacology ; Benzodioxoles* / chemistry ; Alkaloids* / pharmacology ; Alkaloids* / chemistry ; Piperidines* / pharmacology ; Piperidines* / chemistry ; Docetaxel* / pharmacology ; Signal Transduction* / drug effects ; Drug Resistance, Neoplasm* / drug effects ; Prostatic Neoplasms* / drug therapy ; Prostatic Neoplasms* / metabolism ; Prostatic Neoplasms* / pathology ; Apoptosis* / drug effects ; Cell Movement* / drug effects ; Humans ; Male ; Cell Line, Tumor ; Receptors, Notch / metabolism ; Antineoplastic Agents / pharmacology ; Antineoplastic Agents / chemistry ; Cell Survival / drug effects ; Receptor, Notch1 / metabolism
  • References: Benayad, S., Wahnou, H., El Kebbaj, R., Liagre, B., Sol, V., Oudghiri, M., Saad, E. M., Duval, R. E., & Limami, Y. (2023). The promise of Piperine in cancer chemoprevention. Cancers, 15, 5488. https://doi.org/10.3390/cancers15225488. ; Cristofani, R., Montagnani Marelli, M., Cicardi, M. E., Fontana, F., Marzagalli, M., Limonta, P., Poletti, A., & Moretti, R. M. (2018). Dual role of autophagy on docetaxel‐sensitivity in prostate cancer cells. Cell Death & Disease, 9, 889. https://doi.org/10.1038/s41419‐018‐0866‐5. ; Cui, D., Dai, J., Keller, J. M., Mizokami, A., Xia, S., & Keller, E. T. (2015). Notch pathway inhibition using PF‐03084014, a γ‐secretase inhibitor (GSI), enhances the antitumor effect of docetaxel in prostate cancer. Clinical Cancer Research, 21, 4619–4629. https://doi.org/10.1158/1078‐0432.Ccr‐15‐0242. ; Domingo‐Domenech, J., Vidal, S. J., Rodriguez‐Bravo, V., Castillo‐Martin, M., Quinn, S. A., Rodriguez‐Barrueco, R., Bonal, D. M., Charytonowicz, E., Gladoun, N., de la Iglesia‐Vicente, J., Petrylak, D. P., Benson, M. C., Silva, J. M., & Cordon‐Cardo, C. (2012). Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch‐ and hedgehog‐dependent tumor‐initiating cells. Cancer Cell, 22, 373–388. https://doi.org/10.1016/j.ccr.2012.07.016. ; Han, E. J., Choi, E. Y., Jeon, S. J., Lee, S. W., Moon, J. M., Jung, S. H., & Jung, J. Y. (2023). Piperine induces apoptosis and autophagy in HSC‐3 human Oral cancer cells by regulating PI3K signaling pathway. International Journal of Molecular Sciences, 24, 13949. https://doi.org/10.3390/ijms241813949. ; Han, J., Zhang, S., He, J., & Li, T. (2023). Piperine: Chemistry and biology. Toxins, 15(12), 696. https://doi.org/10.3390/toxins15120696. ; Haq, I. U., Imran, M., Nadeem, M., Tufail, T., Gondal, T. A., & Mubarak, M. S. (2021). Piperine: A review of its biological effects. Phytotherapy Research, 35, 680–700. https://doi.org/10.1002/ptr.6855. ; Hashemi, M., Zandieh, M. A., Talebi, Y., Rahmanian, P., Shafiee, S. S., Nejad, M. M., Babaei, R., Sadi, F. H., Rajabi, R., Abkenar, Z. O., Rezaei, S., Ren, J., Nabavi, N., Khorrami, R., Rashidi, M., Hushmandi, K., Entezari, M., & Taheriazam, A. (2023). Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomedicine & Pharmacotherapy, 160, 114392. https://doi.org/10.1016/j.biopha.2023.114392. ; Huang, J., Chen, Y., Li, J., Zhang, K., Chen, J., Chen, D., Feng, B., Song, H., Feng, J., Wang, R., & Chen, L. (2016). Notch‐1 confers chemoresistance in lung adenocarcinoma to Taxanes through AP‐1/microRNA‐451 mediated regulation of MDR‐1. Molecular Therapy – Nucleic Acids, 5, e375. https://doi.org/10.1038/mtna.2016.82. ; Jiang, X., Guo, S., Xu, M., Ma, B., Liu, R., Xu, Y., & Zhang, Y. (2022). TFAP2C‐mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel‐resistant prostate cancer through c‐Myc/miR‐25‐3p/SLC7A11 signaling. Frontiers in Oncology, 12, 862015. https://doi.org/10.3389/fonc.2022.862015. ; Liu, T., Fan, M. Q., Xie, X. X., Shu, Q. P., Du, X. H., Qi, L. Z., Zhang, X. D., Zhang, M. H., Shan, G., Du, R. L., & Li, S. Z. (2023). Activation of CTNNB1 by deubiquitinase UCHL3‐mediated stabilization facilitates bladder cancer progression. Journal of Translational Medicine, 21, 656. https://doi.org/10.1186/s12967‐023‐04311‐3. ; Lu, X., Yang, F., Chen, D., Zhao, Q., Chen, D., Ping, H., & Xing, N. (2020). Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. International Journal of Biological Sciences, 16, 1121–1134. https://doi.org/10.7150/ijbs.41686. ; Makhov, P., Golovine, K., Canter, D., Kutikov, A., Simhan, J., Corlew, M. M., Uzzo, R. G., & Kolenko, V. M. (2012). Co‐administration of piperine and docetaxel results in improved anti‐tumor efficacy via inhibition of CYP3A4 activity. Prostate, 72, 661–667. https://doi.org/10.1002/pros.21469. ; Milinkovic, I., Djinic Krasavcevic, A., Nikolic, N., Aleksic, Z., Carkic, J., Jezdic, M., Jankovic, S., & Milasin, J. (2021). Notch down‐regulation and inflammatory cytokines and RANKL overexpression involvement in peri‐implant mucositis and peri‐implantitis: A cross‐sectional study. Clinical Oral Implants Research, 32, 1496–1505. https://doi.org/10.1111/clr.13850. ; Mine, T., Matsueda, S., Gao, H., Li, Y., Wong, K. K., Peoples, G. E., Ferrone, S., & Ioannides, C. G. (2010). Created Gli‐1 duplex short‐RNA (i‐Gli‐RNA) eliminates CD44 Hi progenitors of taxol‐resistant ovarian cancer cells. Oncology Reports, 23, 1537–1543. https://doi.org/10.3892/or_00000793. ; Nayana, P., Manjunatha, H., Gollapalli, P., Ashok, A. K., Karal Andrade, P., & Vijayalaksmi, V. (2024). A combined in vitro and molecular dynamics simulation studies unveil the molecular basis of the anticancer potential of piperine targeting AKT1 against prostate cancer. Journal of Biomolecular Structure & Dynamics, 42, 3616–3629. https://doi.org/10.1080/07391102.2023.2220045. ; O'Neill, A. J., Prencipe, M., Dowling, C., Fan, Y., Mulrane, L., Gallagher, W. M., O'Connor, D., O'Connor, R., Devery, A., Corcoran, C., Rani, S., O'Driscoll, L., Fitzpatrick, J. M., & Watson, R. W. (2011). Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Molecular Cancer, 10, 126. https://doi.org/10.1186/1476‐4598‐10‐126. ; Ouyang, D. Y., Zeng, L. H., Pan, H., Xu, L. H., Wang, Y., Liu, K. P., & He, X. H. (2013). Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food and Chemical Toxicology, 60, 424–430. https://doi.org/10.1016/j.fct.2013.08.007. ; Phillips, T. M., McBride, W. H., & Pajonk, F. (2006). The response of CD24(−/low)/CD44+ breast cancer‐initiating cells to radiation. Journal of the National Cancer Institute, 98, 1777–1785. https://doi.org/10.1093/jnci/djj495. ; Qiu, S., Deng, L., Bao, Y., Jin, K., Tu, X., Li, J., Liao, X., Liu, Z., Yang, L., & Wei, Q. (2018). Reversal of docetaxel resistance in prostate cancer by Notch signaling inhibition. Anti‐Cancer Drugs, 29, 871–879. https://doi.org/10.1097/cad.0000000000000659. ; Quijia, C. R., & Chorilli, M. (2022). Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytotherapy Research, 36, 147–163. https://doi.org/10.1002/ptr.7291. ; Rice, M. A., Hsu, E.‐C., Aslan, M., Ghoochani, A., Su, A., & Stoyanova, T. (2019). Loss of Notch1 activity inhibits prostate cancer growth and metastasis and sensitizes prostate cancer cells to antiandrogen therapies. Molecular Cancer Therapeutics, 18, 1230–1242. https://doi.org/10.1158/1535‐7163.MCT‐18‐0804. ; Rios‐Colon, L., Chijioke, J., Niture, S., Afzal, Z., Qi, Q., Srivastava, A., Ramalinga, M., Kedir, H., Cagle, P., Arthur, E., Sharma, M., Moore, J., Deep, G., Suy, S., Collins, S. P., & Kumar, D. (2022). Leptin modulated microRNA‐628‐5p targets Jagged‐1 and inhibits prostate cancer hallmarks. Scientific Reports, 12, 10073. https://doi.org/10.1038/s41598‐022‐13279‐x. ; Rizzo, M. (2021). Mechanisms of docetaxel resistance in prostate cancer: The key role played by miRNAs. Biochimica et Biophysica Acta. Reviews on Cancer, 1875, 188481. https://doi.org/10.1016/j.bbcan.2020.188481. ; Sato, J., Nakano, K., & Miyazaki, H. (2023). Decreased intracellular chloride enhances cell migration and invasion via activation of the ERK1/2 signaling pathway in DU145 human prostate carcinoma cells. Biochemical and Biophysical Research Communications, 685, 149170. https://doi.org/10.1016/j.bbrc.2023.149170. ; Shi, F., Sun, M.‐H., Zhou, Z., Wu, L., Zhu, Z., Xia, S. J., Han, B. M., Zhao, Y. Y., Jing, Y. F., & Cui, D. (2022). Tumor‐associated macrophages in direct contact with prostate cancer cells promote malignant proliferation and metastasis through NOTCH1 pathway. International Journal of Biological Sciences, 18, 5994–6007. https://doi.org/10.7150/ijbs.73141. ; Steg, A. D., Katre, A. A., Goodman, B., Han, H. D., Nick, A. M., Stone, R. L., Coleman, R. L., Alvarez, R. D., Lopez‐Berestein, G., Sood, A. K., & Landen, C. N. (2011). Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer. Clinical Cancer Research, 17, 5674–5685. https://doi.org/10.1158/1078‐0432.Ccr‐11‐0432. ; Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249. https://doi.org/10.3322/caac.21660. ; Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Chi, K. N., Oudard, S., Théodore, C., James, N. D., Turesson, I., Rosenthal, M. A., & Eisenberger, M. A. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England Journal of Medicine, 351, 1502–1512. https://doi.org/10.1056/NEJMoa040720. ; Wang, L., Zi, H., Luo, Y., Liu, T., Zheng, H., Xie, C., Wang, X., & Huang, X. (2020). Inhibition of Notch pathway enhances the anti‐tumor effect of docetaxel in prostate cancer stem‐like cells. Stem Cell Research & Therapy, 11, 258. https://doi.org/10.1186/s13287‐020‐01773‐w. ; Ward, A. B., Mir, H., Kapur, N., Gales, D. N., Carriere, P. P., & Singh, S. (2018). Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti‐apoptotic pathways. World Journal of Surgical Oncology, 16, 108. https://doi.org/10.1186/s12957‐018‐1400‐z. ; Ye, Z., Deng, X., Zhang, J., Shao, R., Song, C., Zhao, J., & Tang, H. (2024). Causal relationship between immune cells and prostate cancer: A Mendelian randomization study. Frontiers in Cell and Development Biology, 12, 1381920. https://doi.org/10.3389/fcell.2024.1381920. ; Younes, M., Mardirossian, R., Rizk, L., Fazlian, T., Khairallah, J. P., Sleiman, C., Naim, H. Y., & Rizk, S. (2022). The synergistic effects of curcumin and chemotherapeutic drugs in inhibiting metastatic, invasive and proliferative pathways. Plants, 11, 2137. https://doi.org/10.3390/plants11162137. ; Zeng, Y., & Yang, Y. (2018). Piperine depresses the migration progression via downregulating the Akt/mTOR/MMP‐9 signaling pathway in DU145 cells. Molecular Medicine Reports, 17, 6363–6370. https://doi.org/10.3892/mmr.2018.8653. ; Zhou, Z., Qin, J., Song, C., Wu, T., Quan, Q., Zhang, Y., Zou, Y., Liu, L., Tang, H., & Zhao, J. (2023). circROBO1 promotes prostate cancer growth and enzalutamide resistance via accelerating glycolysis. Journal of Cancer, 14, 2574–2584. https://doi.org/10.7150/jca.86940.
  • Contributed Indexing: Keywords: Notch signaling pathway; chemoresistance; docetaxel; piperine; prostate cancer
  • Substance Nomenclature: 0 (Polyunsaturated Alkamides) ; U71XL721QK (piperine) ; 0 (Benzodioxoles) ; 0 (Alkaloids) ; 0 (Piperidines) ; 15H5577CQD (Docetaxel) ; 0 (Receptors, Notch) ; 0 (Antineoplastic Agents) ; 0 (Receptor, Notch1)
  • Entry Date(s): Date Created: 20240619 Date Completed: 20240619 Latest Revision: 20240619
  • Update Code: 20240620

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -