Zum Hauptinhalt springen

Development and Evaluation of Ontogeny Functions of the Major UDP-Glucuronosyltransferase Enzymes to Underwrite Physiologically Based Pharmacokinetic Modeling in Pediatric Populations.

Farhan, N ; Dahal, UP ; et al.
In: Journal of clinical pharmacology, 2024-06-19
Online academicJournal

Titel:
Development and Evaluation of Ontogeny Functions of the Major UDP-Glucuronosyltransferase Enzymes to Underwrite Physiologically Based Pharmacokinetic Modeling in Pediatric Populations.
Autor/in / Beteiligte Person: Farhan, N ; Dahal, UP ; Wahlstrom, J
Link:
Zeitschrift: Journal of clinical pharmacology, 2024-06-19
Veröffentlichung: Ahead of Print, 2024
Medientyp: academicJournal
ISSN: 1552-4604 (electronic)
DOI: 10.1002/jcph.2484
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Clin Pharmacol] 2024 Jun 19. <i>Date of Electronic Publication: </i>2024 Jun 19.
  • References: Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug‐metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol. 2007;47(5):566‐578. ; Kearns GL, Abdel‐Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157‐1167. ; Barbour AM, Fossler MJ, Barrett J. Practical considerations for dose selection in pediatric patients to ensure target exposure requirements. AAPS J. 2014;16(4):749‐755. ; Saeheng T, Na‐Bangchang K, Karbwang J. Utility of physiologically based pharmacokinetic (PBPK) modeling in oncology drug development and its accuracy: a systematic review. Eur J Clin Pharmacol. 2018;74(11):1365‐1376. ; Verscheijden LFM, Koenderink JB, Johnson TN, de Wildt SN, Russel FGM. Physiologically‐based pharmacokinetic models for children: Starting to reach maturation? Pharmacol Ther. 2020;211:107541. ; Grimstein M, Yang Y, Zhang X, et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration's Office of Clinical Pharmacology. J Pharm Sci. 2019;108(1):21‐25. ; Yoshida K, Budha N, Jin JY. Impact of physiologically based pharmacokinetic models on regulatory reviews and product labels: Frequent utilization in the field of oncology. Clin Pharmacol Ther. 2017;101(5):597‐602. ; U.S. Food and Drug Administration. Guidance for industry. Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Pediatric Study Plans. Published 2020. Accessed June 8, 2024. https://www.fda.gov/media/86340/download. ; U.S. Food and Drug Administration. Draft guudance for industry. Rare Pediatric Disease Priority Review Vouchers Guidance for Industry. Published 2019. Accessed June 8, 2024. https://www.fda.gov/media/90014/download. ; Johnson TN, Rostami‐Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931‐956. ; Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45(10):1013‐1034. ; Salem AH, Koenig D, Carlson D. Pooled population pharmacokinetic analysis of phase I, II and III studies of linifanib in cancer patients. Clin Pharmacokinet. 2014;53(4):347‐359. ; Upreti VV, Wahlstrom JL. Meta‐analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 2016;56(3):266‐283. ; Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286(5439):487‐491. ; Neumann E, Mehboob H, Ramírez J, Mirkov S, Zhang M, Liu W. Age‐dependent hepatic UDP‐glucuronosyltransferase gene expression and activity in children. Front Pharmacol. 2016;7:437. ; Badee J, Qiu N, Collier AC, et al. Characterization of the ontogeny of hepatic UDP‐glucuronosyltransferase enzymes based on glucuronidation activity measured in human liver microsomes. J Clin Pharmacol. 2019;59(Suppl 1):S42‐S55. ; Bhatt DK, Mehrotra A, Gaedigk A, et al. Age‐ and genotype‐dependent variability in the protein abundance and activity of six major uridine diphosphate‐glucuronosyltransferases in human liver. Clin Pharmacol Ther. 2019;105(1):131‐141. ; McCarver DG, Hines RN. The ontogeny of human drug‐metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther. 2002;300(2):361‐366. ; Bhatt DK, Basit A, Zhang H, et al. Hepatic abundance and activity of androgen‐ and drug‐metabolizing enzyme UGT2B17 are associated with genotype, age, and sex. Drug Metab Dispos. 2018;46(6):888‐896. ; Michelet R, Van Bocxlaer J, Allegaert K, Vermeulen A. The use of PBPK modeling across the pediatric age range using propofol as a case. J Pharmacokinet Pharmacodyn. 2018;45(6):765‐785. ; Conner TM, Reed RC, Zhang T. A physiologically based pharmacokinetic model for optimally profiling lamotrigine disposition and drug‐drug interactions. Eur J Drug Metab Pharmacokinet. 2019;44(3):389‐408. ; Stockwell DC, Landrigan CP, Toomey SL, et al. Adverse events in hospitalized pediatric patients. Pediatrics. 2018;142(2):e20173360. ; Eulmesekian PG, Alvarez JP, Ceriani Cernadas JM, Perez A, Berberis S, Kondratiuk Y. The occurrence of adverse events is associated with increased morbidity and mortality in children admitted to a single pediatric intensive care unit. Eur J Pediatr. 2020;179(3):473‐482. ; Holdsworth MT, Fichtl RE, Behta M, et al. Incidence and impact of adverse drug events in pediatric inpatients. Arch Pediatr Adolesc Med. 2003;157(1):60‐65. ; Anderson GD, Lynn AM. Optimizing pediatric dosing: a developmental pharmacologic approach. Pharmacotherapy. 2009;29(6):680‐690. ; Miyagi SJ, Collier AC. The development of UDP‐glucuronosyltransferases 1A1 and 1A6 in the pediatric liver. Drug Metab Dispos. 2011;39(5):912‐919. ; Leakey JE, Hume R, Burchell B. Development of multiple activities of UDP‐glucuronyltransferase in human liver. Biochem J. 1987;243(3):859‐861. ; Onishi S, Kawade N, Itoh S, Isobe K, Sugiyama S. Postnatal development of uridine diphosphate glucuronyltransferase activity towards bilirubin and 2‐aminophenol in human liver. Biochem J. 1979;184(3):705‐707. ; Garnett WR. Lamotrigine: pharmacokinetics. J Child Neurol. 1997;12(Suppl 1):S10‐15. ; Miyagi SJ, Collier AC. Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. Drug Metab Dispos. 2007;35(9):1587‐1592. ; Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;25(8):416‐426. ; Mooij MG, van Duijn E, Knibbe CAJ, et al. Successful use of [14C]paracetamol microdosing to elucidate developmental changes in drug metabolism. Clin Pharmacokinet. 2017;56(10):1185‐1195. ; Court MH, Duan SX, von Moltke LL, et al. Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP‐glucuronosyltransferase isoforms. J Pharmacol Exp Ther. 2001;299(3):998‐1006. ; Benoit‐Biancamano MO, Connelly J, Villeneuve L, Caron P, Guillemette C. Deferiprone glucuronidation by human tissues and recombinant UDP glucuronosyltransferase 1A6: an in vitro investigation of genetic and splice variants. Drug Metab Dispos. 2009;37(2):322‐329. ; Miyagi SJ, Milne AM, Coughtrie MW, Collier AC. Neonatal development of hepatic UGT1A9: implications of pediatric pharmacokinetics. Drug Metab Dispos. 2012;40(7):1321‐1327. ; Vera JH, Jackson A, Dickinson L, et al. The pharmacokinetic profile of raltegravir‐containing antiretroviral therapy in HIV‐infected individuals over 60 years of age. HIV Clin Trials. 2015;16(1):39‐42. ; Calza L, Colangeli V, Magistrelli E, et al. Plasma trough concentrations of darunavir/ritonavir and raltegravir in older patients with HIV‐1 infection. HIV Medicine. 2017;18(7):474‐481. ; Courlet P, Stader F, Guidi M, et al. Pharmacokinetic profiles of boosted darunavir, dolutegravir and lamivudine in aging people living with HIV. AIDS. 2020;34(1):103‐108. ; Wegner I, Wilhelm AJ, Sander JW, Lindhout D. The impact of age on lamotrigine and oxcarbazepine kinetics: a historical cohort study. Epilepsy Behav. 2013;29(1):217‐221. ; Polepally AR, Brundage RC, Remmel RP, et al. Lamotrigine pharmacokinetics following oral and stable‐labeled intravenous administration in young and elderly adult epilepsy patients: Effect of age. Epilepsia. 2018;59(9):1718‐1726. ; Owen JA, Sitar DS, Berger L, Brownell L, Duke PC, Mitenko PA. Age‐related morphine kinetics. Clin Pharmacol Ther. 1983;34(3):364‐368. ; Kirkpatrick T, Cockshott ID, Douglas EJ, Nimmo WS. Pharmacokinetics of propofol (diprivan) in elderly patients. Br J Anaesth. 1988;60(2):146‐150. ; Baillie SP, Bateman DN, Coates PE, Woodhouse KW. Age and the pharmacokinetics of morphine. Age Ageing. 1989;18(4):258‐262. ; Iirola T, Ihmsen H, Laitio R, et al. Population pharmacokinetics of dexmedetomidine during long‐term sedation in intensive care patients. Br J Anaesth. 2012;108(3):460‐468. ; Greenblatt DJ, Allen MD, Locniskar A, Harmatz JS, Shader RI. Lorazepam kinetics in the elderly. Clin Pharmacol Ther. 1979;26(1):103‐113. ; Schmucker DL. Age‐related changes in liver structure and function: implications for disease? Exp Gerontol. 2005;40(8‐9):650‐659. ; Woodhouse KW, Wynne HA. Age‐related changes in liver size and hepatic blood flow. The influence on drug metabolism in the elderly. Clin Pharmacokinet. 1988;15(5):287‐294. ; Kassahun K, McIntosh I, Cui D, et al. Metabolism and disposition in humans of raltegravir (MK‐0518), an anti‐AIDS drug targeting the human immunodeficiency virus 1 integrase enzyme. Drug Metab Dispos. 2007;35(9):1657‐1663. ; Reese MJ, Savina PM, Generaux GT, et al. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos. 2013;41(2):353‐361. ; Bunglawala F, Rajoli RKR, Mirochnick M, Owen A, Siccardi M. Prediction of dolutegravir pharmacokinetics and dose optimization in neonates via physiologically based pharmacokinetic (PBPK) modelling. J Antimicrob Chemother. 2020;75(3):640‐647. ; Iwamoto M, Wenning LA, Petry AS, et al. Safety, tolerability, and pharmacokinetics of raltegravir after single and multiple doses in healthy subjects. Clin Pharmacol Ther. 2008;83(2):293‐299. ; Gele T, Gouget H, Furlan V, et al. Characteristics of dolutegravir and bictegravir plasma protein binding: a first approach for the study of pharmacologic sanctuaries. Antimicrob Agents Chemother. 2020;64(11):e00895‐20. ; Ota Y, Maruo Y, Matsui K, Mimura Y, Sato H, Takeuchi Y. Inhibitory effect of 5β‐pregnane‐3α,20β‐diol on transcriptional activity and enzyme activity of human bilirubin UDP‐glucuronosyltransferase. Pediatr Res. 2011;70(5): 453–457. ; Shibuya A, Itoh T, Tukey RH, Fujiwara R. Impact of fatty acids on human UDP‐glucuronosyltransferase 1A1 activity and its expression in neonatal hyperbilirubinemia. Sci Rep. 2013;3:2903. ; Fujiwara R, Maruo Y, Chen S, Tukey RH. Role of extrahepatic UDP‐glucuronosyltransferase 1A1: Advances in understanding breast milk‐induced neonatal hyperbilirubinemia. Toxicol Appl Pharmacol. 2015;289(1):124‐132. ; Gao C, Guo Y, Huang M, He J, Qiu X. Breast milk constituents and the development of breast milk jaundice in neonates: a systematic review. Nutrients. 2023;15(10):2261. ; Barbier O, Girard C, Breton R, Belanger A, Hum DW. N‐glycosylation and residue 96 are involved in the functional properties of UDP‐glucuronosyltransferase enzymes. Biochemistry. 2000;39(38):11540‐11552. ; Basu NK, Kole L, Basu M, Chakraborty K, Mitra PS, Owens IS. The major chemical‐detoxifying system of UDP‐glucuronosyltransferases requires regulated phosphorylation supported by protein kinase C. J Biol Chem. 2008;283(34):23048‐23061. ; Basu NK, Kole L, Owens IS. Evidence for phosphorylation requirement for human bilirubin UDP‐glucuronosyltransferase (UGT1A1) activity. Biochem Biophys Res Commun. 2003;303(1):98‐104. ; Fujiwara R, Nakajima M, Yamanaka H, Katoh M, Yokoi T. Interactions between human UGT1A1, UGT1A4, and UGT1A6 affect their enzymatic activities. Drug Metab Dispos. 2007;35(10):1781‐1787. ; Takeda S, Ishii Y, Iwanaga M, et al. Modulation of UDP‐glucuronosyltransferase function by cytochrome P450: evidence for the alteration of UGT2B7‐catalyzed glucuronidation of morphine by CYP3A4. Mol Pharmacol. 2005;67(3):665‐672. ; Chen M, LeDuc B, Kerr S, Howe D, Williams DA. Identification of human UGT2B7 as the major isoform involved in the O‐glucuronidation of chloramphenicol. Drug Metab Dispos. 2010;38(3):368‐375. ; Kauffman RE, Miceli JN, Strebel L, Buckley JA, Done AK, Dajani AS. Pharmacokinetics of chloramphenicol and chloramphenicol succinate in infants and children. J Pediatr. 1981;98(2):315‐320. ; Mulhall A, de Louvois J, Hurley R. Chloramphenicol toxicity in neonates: its incidence and prevention. Br Med J (Clin Res Ed). 1983;287(6403):1424‐1427. ; Burns LE, Hodgman JE, Cass AB. Fatal circulatory collapse in premature infants receiving chloramphenicol. N Engl J Med. 1959;261:1318‐1321. ; Monarch Pharmaceuticals. Chloromycetin Sodium Succinate (chloramphenicol sodium succinate, USP) [package insert] U.S. Food and Drug Administration website. Accessed on June 8, 2024. https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/050155s039lbl.pdf. ; Dajani AS, Kauffman RE. The renaissance of chloramphenicol. Pediatr Clin North Am. 1981;28(1):195‐202. ; Troidle L, Kliger AS, Gorban‐Brennan N, Fikrig M, Golden M, Finkelstein FO. Nine episodes of CPD‐associated peritonitis with vancomycin resistant enterococci. Kidney Int. 1996;50(4):1368‐1372. ; Favetta P, Degoute CS, Perdrix JP, Dufresne C, Boulieu R, Guitton J. Propofol metabolites in man following propofol induction and maintenance. Br J Anaesth. 2002;88(5):653‐658. ; Allegaert K, de Hoon J, Verbesselt R, Naulaers G, Murat I. Maturational pharmacokinetics of single intravenous bolus of propofol. Paediatr Anaesth. 2007;17(11):1028‐1034. ; Allegaert K, Peeters MY, Verbesselt R, et al. Inter‐individual variability in propofol pharmacokinetics in preterm and term neonates. Br J Anaesth. 2007;99(6):864‐870. ; Jones RD, Chan K, Andrew LJ. Pharmacokinetics of propofol in children. Br J Anaesth. 1990;65(5):661‐667. ; Chidambaran V, Costandi A, D'Mello A. Propofol: a review of its role in pediatric anesthesia and sedation. CNS Drugs. 2015;29(7):543‐563. ; Lommerse J, Clarke D, Chain A. Raltegravir dosing in neonates (IMPAACT P1110) Use of allometry and maturation in PK modeling to develop a daily dosing regimen for investigation during the first weeks of life. 2015 PAGE meeting, Hersonissos, Crete, Greece. ; Ohman I, Vitols S, Tomson T. Lamotrigine in pregnancy: pharmacokinetics during delivery, in the neonate, and during lactation. Epilepsia. 2000;41(6):709‐713. ; Vauzelle‐Kervroedan F, Rey E, Cieuta C, et al. Influence of concurrent antiepileptic medication on the pharmacokinetics of lamotrigine as add‐on therapy in epileptic children. Br J Clin Pharmacol. 1996;41(4):325‐330. ; Kataria BK, Ved SA, Nicodemus HF, et al. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 1994;80(1):104‐122. ; Saint‐Maurice C, Cockshott ID, Douglas EJ, Richard MO, Harmey JL. Pharmacokinetics of propofol in young children after a single dose. Br J Anaesth. 1989;63(6):667‐670. ; Raoof AA, van Obbergh LJ, Verbeeck RK. Propofol pharmacokinetics in children with biliary atresia. Br J Anaesth. 1995;74(1):46‐49. ; Petroz GC, Sikich N, James M, et al. A phase I, two‐center study of the pharmacokinetics and pharmacodynamics of dexmedetomidine in children. Anesthesiology. 2006;105(6):1098‐1110. ; Zaya MJ, Hines RN, Stevens JC. Epirubicin glucuronidation and UGT2B7 developmental expression. Drug Metab Dispos. 2006;34(12):2097‐2101. ; Boucher FD, Modlin JF, Weller S, et al. Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J Pediatr. 1993;122(1):137‐144. ; Moodley D, Pillay K, Naidoo K, et al. Pharmacokinetics of zidovudine and lamivudine in neonates following coadministration of oral doses every 12 hours. J Clin Pharmacol. 2001;41(7):732‐741. ; Moodley J, Moodley D, Pillay K, et al. Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency virus type 1‐infected pregnant women and their offspring. J Infect Dis. 1998;178(5):1327‐1333. ; Thaithumyanon P, Thisyakorn U, Limpongsanurak S, et al. Intrapartum and neonatal zidovudine treatment in reduction of perinatal HIV‐1 transmission in Bangkok. J Med Assoc Thai. 2001;84(9):1229‐1234. ; Potts AL, Anderson BJ, Warman GR, Lerman J, Diaz SM, Vilo S. Dexmedetomidine pharmacokinetics in pediatric intensive care–a pooled analysis. Paediatr Anaesth. 2009;19(11):1119‐1129. ; Vilo S, Rautiainen P, Kaisti K, et al. Pharmacokinetics of intravenous dexmedetomidine in children under 11 yr of age. Br J Anaesth. 2008;100(5):697‐700. ; Diaz SM, Rodarte A, Foley J, Capparelli EV. Pharmacokinetics of dexmedetomidine in postsurgical pediatric intensive care unit patients: preliminary study. Pediatr Crit Care Med. 2007;8(5):419‐424. ; Divakaran K, Hines RN, McCarver DG. Human hepatic UGT2B15 developmental expression. Toxicol Sci. 2014;141(1):292‐299. ; Chamberlain JM, Capparelli EV, Brown KM, et al. Pharmacokinetics of intravenous lorazepam in pediatric patients with and without status epilepticus. J Pediatr. 2012;160(4):667‐672.e2. ; Crom WR, Relling MV, Christensen ML, Rivera GK, Evans WE. Age‐related differences in hepatic drug clearance in children: studies with lorazepam and antipyrine. Clin Pharmacol Ther. 1991;50(2):132–140. ; Relling MV, Mulhern RK, Dodge RK, et al. Lorazepam pharmacodynamics and pharmacokinetics in children. J Pediatr. 1989;114(4 Pt 1):641‐646. ; Whitelaw AG, Cummings AJ, McFadyen IR. Effect of maternal lorazepam on the neonate. Br Med J (Clin Res Ed). 1981;282(6270):1106‐1108. ; Herrmann WL, Olson AD, McRoberts JW. Determination of urinary testosterone and epitestosterone in men, women, and children. Clin Chem. 1968;14(6):565‐582. ; Degenhart HJ, Visser HK, Wilmink R. Excretion and production of testosterone in normal children, in children with congenital adrenal hyperplasia, and in children with precocious puberty. Pediatr Res. 1970;4(4):309‐317. ; Krawczynska H, Zachmann M, Prader A. Urinary testosterone glucuronide and sulphate in newborns and young infants. Acta Endocrinol. 1976;82(4):842‐850. ; Cattaneo D, Puoti M, Sollima S, et al. Reduced raltegravir clearance in HIV‐infected liver transplant recipients: an unexpected interaction with immunosuppressive therapy? J Antimicrob Chemother. 2016;71(5):1341‐1345. ; Waalewijn H, Chan MK, Bollen PDJ, et al. Dolutegravir dosing for children with HIV weighing less than 20 kg: pharmacokinetic and safety substudies nested in the open‐label, multicentre, randomised, non‐inferiority ODYSSEY trial. Lancet HIV. 2022;9(5):e341‐e352. ; Zhang J, Hayes S, Sadler BM, et al. Population pharmacokinetics of dolutegravir in HIV‐infected treatment‐naive patients. Br J Clin Pharmacol. 2015;80(3):502‐514. ; Newport DJ, Pennell PB, Calamaras MR, et al. Lamotrigine in breast milk and nursing infants: determination of exposure. Pediatrics. 2008;122(1):e223‐e231. ; Chen C, Casale EJ, Duncan B, Culverhouse EH, Gilman J. Pharmacokinetics of lamotrigine in children in the absence of other antiepileptic drugs. Pharmacotherapy. 1999;19(4):437‐441. ; Battino D, Croci D, Granata T, Mamoli D, Messina S, Perucca E. Single‐dose pharmacokinetics of lamotrigine in children: influence of age and antiepileptic comedication. Ther Drug Monit. 2001;23(3):217‐222. ; Schlumberger E, Chavez F, Palacios L, Rey E, Pajot N, Dulac O. Lamotrigine in treatment of 120 children with epilepsy. Epilepsia. 1994;35(2):359‐367. ; GlaxoSmithKline plc. LAMICTAL (lamotrigine) [package insert]. U.S. Food and Drug Administration website. Accessed on June 6, 2024. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/020241s045s051lbl.pdf. ; Murat I, Billard V, Vernois J, et al. Pharmacokinetics of propofol after a single dose in children aged 1–3 years with minor burns. Comparison of three data analysis approaches. Anesthesiology. 1996;84(3):526‐532. ; Knibbe CA, Melenhorst‐de Jong G, Mestrom M, et al. Pharmacokinetics and effects of propofol 6% for short‐term sedation in paediatric patients following cardiac surgery. Br J Clin Pharmacol. 2002;54(4):415‐422. ; Blusse van Oud‐Alblas HJ, Brill MJE, Peeters MYM, Tibboel D, Danhof M, Knibbe CAJ. Population pharmacokinetic‐pharmacodynamic model of propofol in adolescents undergoing scoliosis surgery with intraoperative wake‐up test: a study using bispectral index and composite auditory evoked potentials as pharmacodynamic endpoints. BMC Anesthesiol. 2019;19(1):15. ; Simons PJ, Cockshott ID, Douglas EJ, Gordon EA, Hopkins K, Rowland M. Disposition in male volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of 14C‐propofol. Xenobiotica. 1988;18(4):429‐440. ; Balis FM, Pizzo PA, Murphy RF, et al. The pharmacokinetics of zidovudine administered by continuous infusion in children. Ann Intern Med. 1989;110(4):279‐285. ; GlaxoSmithKline plc. RETROVIR (zidovudine) [package insert]. U.S. Food and Drug Administration website. Accessed on June 6, 2024. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/019910s033lbl.pdf. ; Hirt D, Warszawski J, Firtion G, et al. High exposure to zidovudine during the first 2 weeks of life and concentration‐toxicity relationships. J Acquir Immune Defic Syndr. 2013;63(5):555‐562. ; Lee BL, Safrin S, Makrides V, Gambertoglio JG. Zidovudine, trimethoprim, and dapsone pharmacokinetic interactions in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother. 1996;40(5):1231‐1236. ; Gallicano K, Sahai J, Ormsby E, Cameron DW, Pakuts A, McGilveray I. Pharmacokinetics of zidovudine after the initial single dose and during chronic‐dose therapy in HIV‐infected patients. Br J Clin Pharmacol. 1993;36(2):128‐131. ; Rajchgot P, Prober C, Soldin S, et al. Chloramphenicol pharmacokinetics in the newborn. Dev Pharmacol Ther. 1983;6(5):305‐314. ; Kearns GL, Bocchini JA Jr, Brown RD, Cotter DL, Wilson JT. Absence of a pharmacokinetic interaction between chloramphenicol and acetaminophen in children. J Pediatr. 1985;107(1):134‐139. ; Burke JT, Wargin WA, Sherertz RJ, Sanders KL, Blum MR, Sarubbi FA. Pharmacokinetics of intravenous chloramphenicol sodium succinate in adult patients with normal renal and hepatic function. J Pharmacokinet Biopharm. 1982;10(6):601‐614.
  • Contributed Indexing: Keywords: UGT; ontogeny; pediatrics; pharmacokinetics; physiologically based pharmacokinetics modeling
  • Entry Date(s): Date Created: 20240619 Latest Revision: 20240619
  • Update Code: 20240620

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -