Zum Hauptinhalt springen

Comparison of the in vivo kinematics between robotic-assisted Bi-cruciate retaining and Bi-cruciate stabilised total knee arthroplasty.

Wong, AY ; Ong, MT ; et al.
In: The international journal of medical robotics + computer assisted surgery : MRCAS, Jg. 20 (2024-06-01), Heft 3, S. e2655
Online academicJournal

Titel:
Comparison of the in vivo kinematics between robotic-assisted Bi-cruciate retaining and Bi-cruciate stabilised total knee arthroplasty.
Autor/in / Beteiligte Person: Wong, AY ; Ong, MT ; Choi, TL ; Lam, GY ; He, X ; Yu, M ; Choi, BC ; Fong, DTP ; Yung, PS
Link:
Zeitschrift: The international journal of medical robotics + computer assisted surgery : MRCAS, Jg. 20 (2024-06-01), Heft 3, S. e2655
Veröffentlichung: 2006- : West Sussex, England : Wiley ; <i>Original Publication</i>: Ilkley, UK : Robotic Publications, c2004-, 2024
Medientyp: academicJournal
ISSN: 1478-596X (electronic)
DOI: 10.1002/rcs.2655
Schlagwort:
  • Humans
  • Biomechanical Phenomena
  • Male
  • Female
  • Retrospective Studies
  • Middle Aged
  • Aged
  • Case-Control Studies
  • Knee Prosthesis
  • Treatment Outcome
  • Proprioception
  • Arthroplasty, Replacement, Knee methods
  • Robotic Surgical Procedures methods
  • Range of Motion, Articular
  • Posterior Cruciate Ligament surgery
  • Knee Joint surgery
  • Knee Joint physiopathology
  • Anterior Cruciate Ligament surgery
  • Anterior Cruciate Ligament physiopathology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Comparative Study
  • Language: English
  • [Int J Med Robot] 2024 Jun; Vol. 20 (3), pp. e2655.
  • MeSH Terms: Arthroplasty, Replacement, Knee* / methods ; Robotic Surgical Procedures* / methods ; Range of Motion, Articular* ; Posterior Cruciate Ligament* / surgery ; Knee Joint* / surgery ; Knee Joint* / physiopathology ; Anterior Cruciate Ligament* / surgery ; Anterior Cruciate Ligament* / physiopathology ; Humans ; Biomechanical Phenomena ; Male ; Female ; Retrospective Studies ; Middle Aged ; Aged ; Case-Control Studies ; Knee Prosthesis ; Treatment Outcome ; Proprioception
  • References: Ackerman IN, Bohensky MA, Zomer E, et al. The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030. BMC Muscoskel Disord. 2019;20(1):90. https://doi.org/10.1186/s12891‐019‐2411‐9. ; Culliford D, Maskell J, Judge A, Cooper C, Prieto‐Alhambra D, Arden NK. Future projections of total hip and knee arthroplasty in the UK: results from the UK Clinical Practice Research Datalink. Osteoarthritis Cartilage. 2015;23(4):594‐600. https://doi.org/10.1016/j.joca.2014.12.022. ; Maradit KH, Larson DR, Crowson CS, et al. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am. 2015;97(17):1386‐1397. https://doi.org/10.2106/jbjs.N.01141. ; Authority H. Elective total joint replacement surgery. Accessed July 5, 2022. https://www.ha.org.hk/visitor/ha_visitor_text_index.asp?Content_ID=221223&Lang=ENG&Dimension=100&Parent_ID=214172. ; Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res. 2009;467(10):2606‐2612. https://doi.org/10.1007/s11999‐009‐0834‐6. ; Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468(1):57‐63. https://doi.org/10.1007/s11999‐009‐1119‐9. ; Gunaratne R, Pratt DN, Banda J, Fick DP, Khan RJK, Robertson BW. Patient dissatisfaction following total knee arthroplasty: a systematic review of the literature. J Arthroplasty. 2017;32(12):3854‐3860. https://doi.org/10.1016/j.arth.2017.07.021. ; Nashi N, Hong CC, Krishna L. Residual knee pain and functional outcome following total knee arthroplasty in osteoarthritic patients. Knee Surg Sports Traumatol Arthrosc. 2015;23(6):1841‐1847. https://doi.org/10.1007/s00167‐014‐2910‐z. ; Nakahara H, Okazaki K, Mizu‐Uchi H, et al. Correlations between patient satisfaction and ability to perform daily activities after total knee arthroplasty: why aren't patients satisfied? J Orthop Sci. 2015;20(1):87‐92. https://doi.org/10.1007/s00776‐014‐0671‐7. ; Lau CT, Chau WW, Lau LC, Ho KK, Ong MT, Yung PS. Surgical accuracy and clinical outcomes of image‐free robotic‐assisted total knee arthroplasty. Int J Med Robot. 2023;19(3):e2505. https://doi.org/10.1002/rcs.2505. ; Chin BZ, Tan SSH, Chua KCX, Budiono GR, Syn NL, O'Neill GK. Robot‐assisted versus conventional total and unicompartmental knee arthroplasty: a meta‐analysis of radiological and functional outcomes. J Knee Surg. 2021;34(10):1064‐1075. https://doi.org/10.1055/s‐0040‐1701440. ; Hampp EL, Chughtai M, Scholl LY, et al. Robotic‐arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques. J Knee Surg. 2019;32(3):239‐250. https://doi.org/10.1055/s‐0038‐1641729. ; Ackerman IN, Bohensky MA, Zomer E, et al. The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030. BMC Muscoskel Disord. 2019;20(1):90. https://doi.org/10.1186/s12891‐019‐2411‐9. ; Sodhi N, Khlopas A, Piuzzi NS, et al. The learning curve associated with robotic total knee arthroplasty. J Knee Surg. 2018;31(1):17‐21. https://doi.org/10.1055/s‐0037‐1608809. ; Yee DKH, Ng JP, Lau CTK, et al. Surgical accuracy of image‐free versus image‐based robotic‐assisted total knee arthroplasty. Int J Med Robot Comput Assist Surg. 2023. https://doi.org/10.1002/rcs.2574. ; Bollars P, Meshram P, Al Thani S, Schotanus MGM, Albelooshi A. Achieving functional alignment in total knee arthroplasty: early experience using a second‐generation imageless semi‐autonomous handheld robotic sculpting system. Int Orthop. 2023;47(2):585‐593. https://doi.org/10.1007/s00264‐022‐05649‐x. ; Boese CK, Ebohon S, Ries C, De Faoite D. Bi‐cruciate retaining total knee arthroplasty: a systematic literature review of clinical outcomes. Arch Orthop Trauma Surg. 2021;141(2):293‐304. https://doi.org/10.1007/s00402‐020‐03622‐0. ; Amiri S, Wilson DR. A computational modeling approach for investigating soft tissue balancing in bicruciate retaining knee arthroplasty. Comput Math Methods Med. 2012/10/02 2012;2012:652865. https://doi.org/10.1155/2012/652865. ; Jacofsky D. Bicruciate‐retaining total knee arthroplasty. In: Bellemans J, Ries MD, Victor JMK, eds. Total Knee Arthroplasty: A Guide to Get Better Performance. Springer Berlin Heidelberg; 2005:291‐294. ; De Mulder J, Berger P, Vandenneucker H. Bicruciate retaining total knee arthroplasty: results throughout history. Acta Orthop Belg. 2021;87(1):73‐83. ; Cherian JJ, Kapadia BH, Banerjee S, Jauregui JJ, Harwin SF, Mont MA. Bicruciate‐retaining total knee arthroplasty: a review. J Knee Surg. 2014;27(3):199‐205. https://doi.org/10.1055/s‐0034‐1374812. ; Stiehl JB, Komistek RD, Cloutier JM, Dennis DA. The cruciate ligaments in total knee arthroplasty: a kinematic analysis of 2 total knee arthroplasties. J Arthroplasty. 2000;15(5):545‐550. https://doi.org/10.1054/arth.2000.4638. ; Parcells BW, Tria AJ, Jr. The cruciate ligaments in total knee arthroplasty. Am J Orthoped. 2016;45(4):E153‐E160. ; Culliford D, Maskell J, Judge A, Cooper C, Prieto‐Alhambra D, Arden NK. Future projections of total hip and knee arthroplasty in the UK: results from the UK Clinical Practice Research Datalink. Osteoarthritis Cartilage. 2015;23(4):594‐600. https://doi.org/10.1016/j.joca.2014.12.022. ; Hamai S, Moro‐oka TA, Dunbar NJ, Miura H, Iwamoto Y, Banks SA. In vivo healthy knee kinematics during dynamic full flexion. BioMed Res Int. 2013;2013:717546. https://doi.org/10.1155/2013/717546. ; Tanifuji O, Sato T, Kobayashi K, et al. Three‐dimensional in vivo motion analysis of normal knees using single‐plane fluoroscopy. J Orthop Sci. 2011/11/01 2011;16(6):710‐718. https://doi.org/10.1007/s00776‐011‐0149‐9. ; Grieco TF, Sharma A, Dessinger GM, Cates HE, Komistek RD. In vivo kinematic comparison of a bicruciate stabilized total knee arthroplasty and the normal knee using fluoroscopy. J Arthroplasty. 2018/02/01/ 2018;33(2):565‐571. https://doi.org/10.1016/j.arth.2017.09.035. ; Pua YH, Poon CL, Seah FJ, et al. Predicting individual knee range of motion, knee pain, and walking limitation outcomes following total knee arthroplasty. Acta Orthop. 2019;90(2):179‐186. https://doi.org/10.1080/17453674.2018.1560647. ; Stratford PW, Kennedy DM, Robarts SF. Modelling knee range of motion post arthroplasty: clinical applications. Physiother Can. 2010;62(4):378‐387. https://doi.org/10.3138/physio.62.4.378. ; Goldfarb N, Lewis A, Tacescu A, Fischer GS. Open source vicon toolkit for motion capture and gait analysis. Comput Methods Progr Biomed. 2021;212:106414. https://doi.org/10.1016/j.cmpb.2021.106414. ; Noble PC, Scuderi GR, Brekke AC, et al. Development of a new knee society scoring system. Clin Orthop Relat Res. 2012;470(1):20‐32. https://doi.org/10.1007/s11999‐011‐2152‐z. ; Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br. 2002;84(1):50‐53. https://doi.org/10.1302/0301‐620x.84b1.12432. ; Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB. Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res. 2003;416:37‐57. https://doi.org/10.1097/01.blo.0000092986.12414.b5. ; Ishibashi T, Tomita T, Yamazaki T, Tsuji S, Yoshikawa H, Sugamoto K. Kinematics of bicruciate and posterior stabilized total knee arthroplasty during deep knee flexion and stair climbing. J Orthop Res. 2021;39(6):1262‐1270. https://doi.org/10.1002/jor.24773. ; Maradit KH, Larson DR, Crowson CS, et al. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am. 2015;97(17):1386‐1397. https://doi.org/10.2106/jbjs.N.01141. ; Ogard WK. Proprioception in sports medicine and athletic conditioning. Strength Condit J. 2011;33(3):111‐118. https://doi.org/10.1519/SSC.0b013e31821bf3ae. ; Niessen MHM, Veeger DHEJ, Janssen TWJ. Effect of body orientation on proprioception during active and passive motions. Am J Phys Med Rehabil. 2009;88(12):979‐985. https://doi.org/10.1097/PHM.0b013e3181c1eac1. ; Hillier S, Immink M, Thewlis D. Assessing proprioception: a systematic review of possibilities. Neurorehabilitation Neural Repair. 2015;29(10):933‐949. https://doi.org/10.1177/1545968315573055. ; Koralewicz LM, Engh GA. Comparison of proprioception in arthritic and age‐matched normal knees. JBJS. 2000;82(11):1582‐1588. https://doi.org/10.2106/00004623‐200011000‐00011. ; Barrett D, Cobb A, Bentley G. Joint proprioception in normal, osteoarthritic and replaced knees. The Journal of Bone & Joint Surgery British. 1991;73‐B(1):53‐56. https://doi.org/10.1302/0301‐620x.73b1.1991775.
  • Contributed Indexing: Keywords: gait; kinematics; knee arthroplasty; proprioception; robotic‐assisted arthroplasty
  • Entry Date(s): Date Created: 20240626 Date Completed: 20240626 Latest Revision: 20240626
  • Update Code: 20240627

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -